Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: Microbial responses and kinetics modeling

[1]  Haiqiang Chen Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk. , 2007, Food microbiology.

[2]  S. E. Martin,et al.  Inactivation of Shigella boydii 18 IDPH and Listeria monocytogenes Scott A with power ultrasound at different acoustic energy densities and temperatures. , 2007, Journal of food science.

[3]  D. Pyle,et al.  New Mathematical Modeling Approach for Predicting Microbial Inactivation by High Hydrostatic Pressure , 2007, Applied and Environmental Microbiology.

[4]  V. Lelas Novel food processing techniques , 2006 .

[5]  D. Hoover,et al.  Inactivation of Staphylococcus aureus and Escherichia coli O157:H7 under isothermal-endpoint pressure conditions , 2006 .

[6]  R. Moezelaar,et al.  Quantification of the Effects of Salt Stress and Physiological State on Thermotolerance of Bacillus cereus ATCC 10987 and ATCC 14579 , 2006, Applied and Environmental Microbiology.

[7]  S. Condón,et al.  Variation in resistance of natural isolates of Staphylococcus aureus to heat, pulsed electric field and ultrasound under pressure , 2006, Journal of applied microbiology.

[8]  S. Condón,et al.  Inactivation of Salmonella Senftenberg 775W by ultrasonic waves under pressure at different water activities. , 2006, International journal of food microbiology.

[9]  M. Guo,et al.  Inactivation of microorganisms in milk and apple cider treated with ultrasound. , 2006, Journal of food protection.

[10]  Hao Feng,et al.  Inactivation of Escherichia coli with power ultrasound in apple cider , 2006 .

[11]  Hao Feng,et al.  Power ultrasound treatment of Listeria monocytogenes in apple cider. , 2005, Journal of food protection.

[12]  D. Hoover,et al.  Inactivation of Salmonella typhimurium DT 104 in UHT whole milk by high hydrostatic pressure. , 2005, International journal of food microbiology.

[13]  S. Condón,et al.  Modelling inactivation of Listeria monocytogenes by pulsed electric fields in media of different pH. , 2005, International journal of food microbiology.

[14]  Sandra Guerrero,et al.  Response of Saccharomyces cerevisiae to the combined action of ultrasound and low weight chitosan , 2005 .

[15]  J. Weiss,et al.  Inactivation of Escherichia coli O157:H7 by high-intensity ultrasonication in the presence of salts. , 2004, Foodborne pathogens and disease.

[16]  E. Ryser,et al.  Reduction of microbial pathogens during apple cider production using sodium hypochlorite, copper ion, and sonication. , 2004, Journal of food protection.

[17]  D. Hoover,et al.  Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669. , 2003, International journal of food microbiology.

[18]  D. Knorr,et al.  Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. , 2003, Journal of food protection.

[19]  Dallas G. Hoover,et al.  Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk , 2003 .

[20]  S. Condón,et al.  Inactivation of Salmonella enterica Serovar Enteritidis by Ultrasonic Waves under Pressure at Different Water Activities , 2003, Applied and Environmental Microbiology.

[21]  I. Leguerinel,et al.  On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. , 2001, International journal of food microbiology.

[22]  J. Raso,et al.  Predicting Lethal Effect of Ultrasonic Waves Under Pressure Treatments on Listeria monocytogenes ATCC 15313 by Power Measurements , 2000 .

[23]  S. Condón,et al.  Inactivation of Salmonella Enteritidis, Salmonella Typhimurium, and Salmonella Senftenberg by ultrasonic waves under pressure. , 2000, Journal of food protection.

[24]  Javier Raso,et al.  Predicting inactivation of Salmonella senftenberg by pulsed electric fields , 2000 .

[25]  S M Alzamora,et al.  Saccharomyces cerevisiae thermal inactivation kinetics combined with ultrasound. , 1999, Journal of food protection.

[26]  Ignacio Álvarez,et al.  Resistance ofListeria monocytogenesto ultrasonic waves under pressure at sublethal (manosonication) and lethal (manothermosonication) temperatures , 1999 .

[27]  P. Mañas,et al.  Resistance of heat‐shocked cells of Listeria monocytogenes to mano‐sonication and mano‐thermo‐sonication , 1999, Letters in applied microbiology.

[28]  S. Condón,et al.  Bacterial Resistance to Ultrasonic Waves under Pressure at Nonlethal (Manosonication) and Lethal (Manothermosonication) Temperatures , 1999, Applied and Environmental Microbiology.

[29]  S. Condón,et al.  Inactivation of Bacillus subtilis spores by combining ultrasonic waves under pressure and mild heat treatment , 1998, Journal of applied microbiology.

[30]  M Peleg,et al.  Reinterpretation of microbial survival curves. , 1998, Critical reviews in food science and nutrition.

[31]  S. Condón,et al.  Influence of Temperature and Pressure on the Lethality of Ultrasound , 1998, Applied and Environmental Microbiology.

[32]  T. Mattila-Sandholm,et al.  Potential of lactic acid bacteria and novel antimicrobials against Gram-negative bacteria , 1997 .

[33]  Donald W. Schaffner,et al.  Predictive microbiology: Where are we, and Where are we going? , 1997 .

[34]  R G Earnshaw,et al.  Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure. , 1995, International journal of food microbiology.

[35]  W. H. Carter,et al.  Use of a Modified Gompertz Equation to Model Nonlinear Survival Curves for Listeria monocytogenes Scott A. , 1995, Journal of food protection.

[36]  Grahame W. Gould,et al.  New Methods of Food Preservation , 1994 .

[37]  M. B. Cole,et al.  A vitalistic model to describe the thermal inactivation ofListeria monocytogenes , 1993, Journal of Industrial Microbiology.

[38]  J. A. Ordóñez,et al.  Effect of combined ultrasonic and heat treatment (thermoultrasonication) on the survival of a strain of Staphylococcus aureus , 1987, Journal of Dairy Research.

[39]  O. Cerf,et al.  A REVIEW Tailing of Survival Curves of Bacterial Spores , 1977 .

[40]  D. Sette,et al.  Statistical Approach to Ultrasonic Cavitation , 1963 .

[41]  E. Ackerman,et al.  EXPOSURE OF MICROORGANISMS TO MEASURED SOUND FIELDS , 1954, Journal of bacteriology.

[42]  S. E. Jacobs,et al.  THE LETHAL ACTION OF ULTRASONIC WAVES ON BACTERIA SUSPENDED IN MILK AND OTHER LIQUIDS , 1954 .

[43]  Alfred L. Loomis,et al.  THE DESTRUCTION OF LUMINOUS BACTERIA BY HIGH FREQUENCY SOUND WAVES , 1929, Journal of bacteriology.

[44]  G. Barbosa‐Cánovas,et al.  Microbial inactivation by ultrasound. , 2005 .

[45]  Timothy J. Mason,et al.  1 – An introduction to the uses of power ultrasound in chemistry , 2002 .

[46]  A. D'emanuele,et al.  The effect of ultrasound on Escherichia coli viability , 1996, Journal of basic microbiology.

[47]  Javier Raso,et al.  Effect of heat and ultrasound on microorganisms and enzymes , 1995 .

[48]  Dietrich Knorr,et al.  Effects of high-hydrostatic-pressure processes on food safety and quality , 1993 .

[49]  A. Nasim,et al.  Repairable lesions in microorganisms , 1984 .

[50]  R. E. Lee,et al.  On the Application of the Mass Law to the Process of Disinfection—being a Contribution to the “Mechanistic Theory” as opposed to the “Vitalistic Theory ” , 1917 .