Biclustering of Gene Expression Data Using PSO-GA Hybrid

The biclustering of gene expression data is an important technology for biologists and the biclustering problem is proven to be NP-hard. In this paper, a hybrid evolutionary optimization algorithm based on particle swarm and Genetic algorithms is presented to solve the biclustering problem. Additionally, this paper gives a comparison between hybrid algorithm, GA, and PSO. Experiments show that our method can beat other methods.

[1]  Jesús S. Aguilar-Ruiz,et al.  Shifting and scaling patterns from gene expression data , 2005, Bioinform..

[2]  P. J. Angeline,et al.  Using selection to improve particle swarm optimization , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[3]  Padraig Cunningham,et al.  Biclustering of expression data using simulated annealing , 2005, 18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05).

[4]  Feng Liu,et al.  Biclustering of Gene Expression Data Using EDA-GA Hybrid , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[5]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[6]  J. Hartigan Direct Clustering of a Data Matrix , 1972 .

[7]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[8]  Federico Divina,et al.  Evolutionary Biclustering of Microarray Data , 2005, EvoWorkshops.

[9]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[10]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[11]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[12]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[13]  Yoshikazu Fukuyama,et al.  Practical distribution state estimation using hybrid particle swarm optimization , 2001, 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194).

[14]  Eckart Zitzler,et al.  An EA framework for biclustering of gene expression data , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[15]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[16]  Thomas Kiel Rasmussen,et al.  Hybrid Particle Swarm Optimiser with breeding and subpopulations , 2001 .