Perturbation Analysis of Subspace-Based Methods in Estimating a Damped Complex Exponential
暂无分享,去创建一个
[1] R. Kumaresan,et al. Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .
[2] Petre Stoica,et al. MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.
[3] Tapan K. Sarkar,et al. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..
[4] Stephen A. Dyer,et al. Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..
[5] Benjamin Friedlander,et al. On the accuracy of the Kumaresan-Tufts method for estimating complex damped exponentials , 1987, IEEE Trans. Acoust. Speech Signal Process..
[6] Eric W. Weisstein,et al. The CRC concise encyclopedia of mathematics , 1999 .
[7] A. Lee Swindlehurst,et al. A Performance Analysis ofSubspace-Based Methods in thePresence of Model Errors { Part I : The MUSIC AlgorithmA , 1992 .
[8] Bhaskar D. Mo. Model Based Processing of Signals: A State Space Approach , 1992 .
[9] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[10] Yoram Bresler,et al. Maximum likelihood parameter estimation of superimposed signals by dynamic programming , 1993, IEEE Trans. Signal Process..
[11] Ahmad Okhovat,et al. Statistical analysis of the Tufts-Kumaresan and principal Hankel components methods for estimating damping factors of single complex exponentials , 1989, International Conference on Acoustics, Speech, and Signal Processing,.
[12] Yoram Bresler,et al. Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..
[13] Bhaskar D. Rao,et al. Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise , 1989, IEEE Trans. Acoust. Speech Signal Process..
[14] Bhaskar D. Rao. Perturbation analysis of an SVD-based linear prediction method for estimating the frequencies of multiple sinusoids , 1988, IEEE Trans. Acoust. Speech Signal Process..
[15] Petre Stoica,et al. Overdetermined Yule-Walker estimation of the frequencies of multiple sinusoids: Accuracy aspects , 1989 .
[16] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[17] Tapan K. Sarkar,et al. On SVD for estimating generalized eigenvalues of singular matrix pencil in noise , 1991, IEEE Trans. Signal Process..
[18] Thomas Kailath,et al. ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..
[19] Alex ChiChung Kot,et al. Analysis of linear prediction by matrix approximation , 1993, IEEE Trans. Signal Process..
[20] K. Arun,et al. State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem , 1983 .
[21] Randolph L. Moses,et al. Statistical analysis of TLS-based prony techniques , 1994, Autom..
[22] Sudhakar M. Pandit,et al. Cramer-Rao lower bounds for a damped sinusoidal process , 1995, IEEE Trans. Signal Process..
[23] Tapan K. Sarkar,et al. Perturbation analysis of TK method for harmonic retrieval problems , 1988, IEEE Trans. Acoust. Speech Signal Process..
[24] Petre Stoica,et al. Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements , 1989, IEEE Trans. Acoust. Speech Signal Process..