Exponential decay and ergodicity of general Markov processes and their discrete skeletons
暂无分享,去创建一个
[1] Esa Nummelin,et al. Semi-Markov processes on a general state space: α-theory and quasi-stationarity , 1980, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[2] R. Tweedie,et al. Exponential ergodicity in Markovian queueing and dam models , 1979, Journal of Applied Probability.
[3] R. Tweedie,et al. The recurrence structure of general Markov processes , 1979, Advances in Applied Probability.
[4] R. Tweedie,et al. Markov Chains with Continuous Components , 1979 .
[5] E. Nummelin. The discrete skeleton method and a total variation limit theorem for continous-time Markov processes. , 1978 .
[6] W. Winkler. Continuous Parameter Markov Processes , 1978 .
[7] R. Tweedie,et al. Geometric Ergodicity and R-positivity for General Markov Chains , 1978 .
[8] Esa Nummelin. Limit theorems for α-recurrent semi-Markov processes , 1976 .
[9] R. Tweedie,et al. R -Theory for Markov Chains on a Topological State Space I , 1975 .
[10] Richard L. Tweedie,et al. Quasi-stationary distributions for Markov chains on a general state space , 1974, Journal of Applied Probability.
[11] R. Tweedie. $R$-Theory for Markov Chains on a General State Space I: Solidarity Properties and $R$-Recurrent Chains , 1974 .
[12] M. Bartlett,et al. Markov Processes and Potential Theory , 1972, The Mathematical Gazette.
[13] S. Orey. Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities , 1971 .
[14] J. Azema,et al. Mesure invariante sur les classes récurrentes des processus de Markov , 1967 .
[15] E. Seneta,et al. On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states , 1966, Journal of Applied Probability.
[16] J. F. C. Kingman,et al. The Exponential Decay of Markov Transition Probabilities , 1963 .
[17] J. Kingman. Ergodic Properties of Continuous‐Time Markov Processes and Their Discrete Skeletons , 1963 .
[18] David G. Kendall,et al. Some analytical properties of continuous stationary Markov transition functions , 1955 .
[19] E. C. Titchmarsh,et al. The Laplace Transform , 1991, Heat Transfer 1.