Trace Abstraction Refinement for Timed Automata

Timed automata are a well known formalism for modeling real-time systems. Model checking of timed automata is important for ensuring that the systems satisfy certain properties. Safety is one of the most important properties for timed automata. In this paper we propose a method for the safety checking of timed automata, which is an adaptation of the general trace abstraction refinement framework to timed automata. The feature of our work is that we use zone-based LU-abstraction instead of interpolation techniques. This method performs zone computation only when necessary, and the abstraction on zones is coarser because only part of the control structure is considered when computing LU-bounds. We give an example to show when this method could perform more efficiently than the traditional zone-based search algorithm.

[1]  Wang Yi,et al.  Timed Automata: Semantics, Algorithms and Tools , 2003, Lectures on Concurrency and Petri Nets.

[2]  Dirk Beyer,et al.  Improvements in BDD-Based Reachability Analysis of Timed Automata , 2001, FME.

[3]  Kim G. Larsen,et al.  Lower and upper bounds in zone-based abstractions of timed automata , 2004, International Journal on Software Tools for Technology Transfer.

[4]  Jochen Hoenicke,et al.  Refinement of Trace Abstraction , 2009, SAS.

[5]  Wang Yi,et al.  Clock Difference Diagrams , 1998, Nord. J. Comput..

[6]  Kim G. Larsen,et al.  Static Guard Analysis in Timed Automata Verification , 2003, TACAS.

[7]  Jochen Hoenicke,et al.  Software Model Checking for People Who Love Automata , 2013, CAV.

[8]  Edmund M. Clarke,et al.  Counterexample-Guided Abstraction Refinement , 2000, CAV.

[9]  Igor Walukiewicz,et al.  Lazy abstractions for timed automata , 2013, CAV.

[10]  André Platzer,et al.  SAT-based Abstraction Refinement for Real-time Systems , 2007, FACS.

[11]  Andrzej Zbrzezny Improvements in SAT-based Reachability Analysis for Timed Automata , 2004, Fundam. Informaticae.

[12]  Jun Sun,et al.  Improved BDD-Based Discrete Analysis of Timed Systems , 2012, FM.

[13]  Wolfgang Reisig,et al.  Lectures on Concurrency and Petri Nets , 2003, Lecture Notes in Computer Science.

[14]  Amir Pnueli,et al.  Data-Structures for the Verification of Timed Automata , 1997, HART.

[15]  Igor Walukiewicz,et al.  Better Abstractions for Timed Automata , 2011, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[16]  Kim G. Larsen,et al.  Automatic Abstraction Refinement for Timed Automata , 2007, FORMATS.

[17]  Henrik Reif Andersen,et al.  Fully Symbolic Model Checking of Timed Systems using Difference Decision Diagrams , 2001, SMC@FLoC.

[18]  Wojciech Penczek,et al.  Checking Reachability Properties for Timed Automata via SAT , 2002, Fundam. Informaticae.

[19]  Maria Sorea,et al.  Lazy Approximation for Dense Real-Time Systems , 2004, FORMATS/FTRTFT.

[20]  Wang Yi,et al.  UPPAAL - a Tool Suite for Automatic Verification of Real-Time Systems , 1996, Hybrid Systems.

[21]  Farn Wang,et al.  Efficient verification of timed automata with BDD-like data structures , 2004, International Journal on Software Tools for Technology Transfer.

[22]  Sergio Yovine,et al.  KRONOS: a verification tool for real-time systems , 1997, International Journal on Software Tools for Technology Transfer.

[23]  Rüdiger Ehlers,et al.  Fully Symbolic Timed Model Checking Using Constraint Matrix Diagrams , 2010, 2010 31st IEEE Real-Time Systems Symposium.

[24]  Thomas A. Henzinger,et al.  Lazy abstraction , 2002, POPL '02.

[25]  Ilkka Niemelä,et al.  Beyond Lassos: Complete SMT-Based Bounded Model Checking for Timed Automata , 2012, FMOODS/FORTE.