Model-driven multicomponent volume exploration

The current multicomponent volume segmentation and labeling methods are mostly hard to get correct segmentation and labeling results automatically and rely hardly on experts’ aids, which make related volume exploration to be time consuming, laborious and prone to errors and omissions. To solve this problem, we present a novel volume exploration method driven by admitted model. We first apply Gaussian mixture models to segment the raw volume. However, different components with similar value are still mixed. To segment these components further, we make use of region-grown principle to produce a fine-grained part segmentation. To label different parts automatically, we found that it is helpful to take advantage of annotated model, like human anatomy model (PlasticboyCC, http://www.plasticboy.co.uk/store/index.html, 2013). However, it is not straightforward to label segmented volume with geometric model automatically. Inspired by electors voting (Au et al., Comput Graph Forum 29:645–654, 2010), we propose a volume-model correspondence schema to overcome this intractable challenge. Moreover, it is essential to exploit intuitive interactive methods for interactive exploration, so we also developed practical precise interaction techniques to assist volume exploration. Our experiments with various data and discussion with specialists show that our method provides an efficient and impactful way to explore volume data.

[1]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[2]  Stefan Bruckner,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2008 Interaction-dependent Semantics for Illustrative Volume Rendering , 2022 .

[3]  David Dagan Feng,et al.  Visibility-driven PET-CT visualisation with region of interest (ROI) segmentation , 2013, The Visual Computer.

[4]  Boaz J. Super Knowledge-based part correspondence , 2007, Pattern Recognit..

[5]  Franz-Erich Wolter,et al.  YaDiV—an open platform for 3D visualization and 3D segmentation of medical data , 2011, The Visual Computer.

[6]  Kwan-Liu Ma,et al.  An intelligent system approach to higher-dimensional classification of volume data , 2005, IEEE Transactions on Visualization and Computer Graphics.

[7]  R. Kirk,et al.  VOXEL‐MAN 3D Navigator. Inner Organs ; Regional, Systemic and Radiological Anatomy. By K. H. Heinz, B. Pflesser, A. Pommert and others. (CD‐Rom ; ISBN 3 540 14759 4.) Berlin : Springer. 2000 , 2001 .

[8]  Rui Wang,et al.  Symposium on Interactive 3D Graphics and Games , 2011, i3D 2011.

[9]  Meritxell Bach Cuadra,et al.  A review of atlas-based segmentation for magnetic resonance brain images , 2011, Comput. Methods Programs Biomed..

[10]  Xiaoru Yuan,et al.  Volume cutout , 2005, The Visual Computer.

[11]  Ghassan Hamarneh,et al.  Prior Knowledge for Part Correspondence , 2011, Comput. Graph. Forum.

[12]  Aaron Hertzmann,et al.  Learning 3D mesh segmentation and labeling , 2010, ACM Trans. Graph..

[13]  Christof Rezk-Salama,et al.  High-Level User Interfaces for Transfer Function Design with Semantics , 2006, IEEE Transactions on Visualization and Computer Graphics.

[14]  Jianlong Zhou,et al.  Automatic Transfer Function Generation Using Contour Tree Controlled Residue Flow Model and Color Harmonics , 2009, IEEE Transactions on Visualization and Computer Graphics.

[15]  Mor Naaman,et al.  Why we tag: motivations for annotation in mobile and online media , 2007, CHI.

[16]  Mary Czerwinski,et al.  Semi-Automatic Image Annotation , 2001, INTERACT.

[17]  Kwan-Liu Ma,et al.  Visibility Histograms and Visibility-Driven Transfer Functions , 2011, IEEE Transactions on Visualization and Computer Graphics.

[18]  Markus Hadwiger,et al.  Real-time volume graphics , 2006, SIGGRAPH '04.

[19]  Joseph Ross Mitchell,et al.  Sketch-based volumetric seeded region growing , 2006, SBM'06.

[20]  Leila De Floriani,et al.  Semantic-Based Segmentation and Annotation of 3D Models , 2009, ICIAP.

[21]  Ivan Viola,et al.  Automatic Transfer Functions Based on Informational Divergence , 2011, IEEE Transactions on Visualization and Computer Graphics.

[22]  Jörg-Stefan Praßni,et al.  Shape-based transfer functions for volume visualization , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[23]  Min Chen,et al.  Data, Information, and Knowledge in Visualization , 2009, IEEE Computer Graphics and Applications.

[24]  Tobias Isenberg,et al.  Semantics by analogy for illustrative volume visualization☆ , 2012, Comput. Graph..

[25]  Frank Nielsen,et al.  Volume catcher , 2005, I3D '05.

[26]  Ming-Yuen Chan,et al.  Relation-Aware Volume Exploration Pipeline , 2008, IEEE Transactions on Visualization and Computer Graphics.

[27]  Klaus Mueller,et al.  A high-dimensional feature clustering approach to support knowledge-assisted visualization , 2009, Comput. Graph..

[28]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[29]  Xiaoru Yuan,et al.  WYSIWYG (What You See is What You Get) Volume Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[30]  Daniel Cohen-Or,et al.  Electors Voting for Fast Automatic Shape Correspondence , 2010, Comput. Graph. Forum.

[31]  Marco Attene,et al.  Characterization of 3D shape parts for semantic annotation , 2009, Comput. Aided Des..

[32]  Carlos D. Correa Visualizing what lies inside , 2009, COMG.

[33]  Sikun Li,et al.  Intuitive volume eraser , 2012, CVM'12.

[34]  Pat Hanrahan,et al.  Characterizing structural relationships in scenes using graph kernels , 2011, SIGGRAPH 2011.

[35]  Karl Heinz Höhne,et al.  Segmentation of the Visible Human for High Quality Volume Based Visualization , 1996, VBC.

[36]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[37]  George Drettakis,et al.  Drawing for Illustration and Annotation in 3D , 2001, Comput. Graph. Forum.

[38]  Alberto Prats-Galino,et al.  A Magnetic Resonance Image Based Atlas of the Rabbit Brain for Automatic Parcellation , 2013, PloS one.

[39]  Nasser Kehtarnavaz,et al.  Improved Labeling of Subcortical Brain Structures in Atlas-Based Segmentation of Magnetic Resonance Images , 2012, IEEE Transactions on Biomedical Engineering.

[40]  Stefan Bruckner,et al.  TECHNICAL REPORT VolumeShop: An Interactive System for Direct Volume , 2022 .

[41]  Kwan-Liu Ma,et al.  Size-based Transfer Functions: A New Volume Exploration Technique , 2008, IEEE Transactions on Visualization and Computer Graphics.

[42]  Jian Zhang,et al.  Efficient Volume Exploration Using the Gaussian Mixture Model. , 2011, IEEE transactions on visualization and computer graphics.

[43]  Ben J. A. Kröse,et al.  Efficient Greedy Learning of Gaussian Mixture Models , 2003, Neural Computation.

[44]  Ivan Viola,et al.  VolumeShop: interactive direct volume illustration , 2005, SIGGRAPH '05.

[45]  David Salesin,et al.  Interactive cutaway illustrations of complex 3D models , 2007, SIGGRAPH 2007.

[46]  Anita Shinde,et al.  A Study on Image Annotation Techniques , 2012 .

[47]  Silvia Biasotti,et al.  3D Scene Comparison using Topological Graphs , 2007, Eurographics Italian Chapter Conference.