Simulation of wake vortex detection with airborne Doppler lidar

A simulation approach is used to demonstrate that an airborne, forward-looking lidar can detect trailing wake vortices generated by a leading aircraft. Computational fluid dynamics techniques are used to generated flowfields containing wake vortices. These flowfields are applied to a Doppler lidar simulation model. The simulated geometry has the forward-looking lidar mounted on a following aircraft, whereas the wake vortices are generated by a leading aircraft. In such a configuration, it is not possible to directly detect the strong rotational velocity components of a wake vortex with a Doppler system; detection relies on the presence of induced axial velocity signatures. We demonstrate that axial flows are induced as the vortices evolve, and that these axial flows can be detected with a Doppler lidar system

[1]  Marcel Lesieur,et al.  Large-eddy simulation of a spatially growing boundary layer over an adiabatic flat plate at low Mach number , 1995 .

[2]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[3]  Leo J. Garodz,et al.  VORTEX WAKE CHARACTERISTICS OF B757-200 AND B767-200 AIRCRAFT USING THE TOWER FLY-BY TECHNIQUE. , 1993 .

[4]  M. Lesieur,et al.  Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate , 1996, Journal of Fluid Mechanics.

[5]  Clinton E. Brown On the Aerodynamics of Wake Vortices , 1972 .

[6]  M. Lesieur,et al.  New Trends in Large-Eddy Simulations of Turbulence , 1996 .

[7]  Denis Darracq,et al.  Three-dimensional Large Eddy Simulation of Wake Vortices. Comparison with Field Measurements. , 1997 .

[8]  Stephen M. Hannon,et al.  Aircraft Wake Vortex Detection and Measurement with Pulsed Solid-state Coherent Laser Radar , 1994 .

[9]  Véronique Ducrocq,et al.  The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations , 1997 .

[10]  P. Flamant,et al.  Simulation in the time domain for heterodyne coherent laser radar. , 1995, Applied optics.

[11]  R. L. Bowles,et al.  Coherent lidar airborne windshear sensor: performance evaluation. , 1991, Applied optics.

[12]  Rod Frehlich,et al.  Effects of Wind Turbulence on Coherent Doppler Lidar Performance , 1997 .

[13]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[14]  R. Hemler,et al.  A Scale Analysis of Deep Moist Convection and Some Related Numerical Calculations , 1982 .

[15]  Alan V. Oppenheim,et al.  Discrete-Time Signal Pro-cessing , 1989 .

[16]  Harold R. Bagley,et al.  Airborne Doppler lidar turbulence detection: ACLAIM flight test results , 1999, Defense, Security, and Sensing.

[17]  David A. Hinton,et al.  NASA Wake Vortex Research for Aircraft Spacing , 1997 .

[18]  G. Batchelor,et al.  Axial flow in trailing line vortices , 1964, Journal of Fluid Mechanics.

[19]  N. Phillips,et al.  Scale Analysis of Deep and Shallow Convection in the Atmosphere , 1962 .

[20]  B. J. Rye,et al.  Detection techniques for validating Doppler estimates in heterodyne lidar. , 1997, Applied optics.

[21]  Alain Stoessel An efficient tool for the study of 3D turbulent combustion phenomena on MPP computers , 1995, HPCN Europe.

[22]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[23]  S. Crow Stability theory for a pair of trailing vortices , 1970 .

[24]  R. Hardesty,et al.  Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems , 1996, Proc. IEEE.