The 0-1 Test for Chaos: A Review

We review here theoretical as well as practical aspects of the 0-1 test for chaos for deterministic dynamical systems. The test is designed to distinguish between regular, i.e. periodic or quasi-periodic, dynamics and chaotic dynamics. It works directly with the time series and does not require any phase space reconstruction. This makes the test suitable for the analysis of discrete maps, ordinary differential equations, delay differential equations, partial differential equations and real world time series. To illustrate the range of applicability we apply the test to examples of discrete dynamics such as the logistic map, Pomeau–Manneville intermittency maps with both summable and nonsummable autocorrelation functions, and the Hamiltonian standard map exhibiting weak chaos. We also consider examples of continuous time dynamics such as the Lorenz-96 system and a driven and damped nonlinear Schrodinger equation. Finally, we show the applicability of the 0-1 test for time series contaminated with noise as found in real world applications.

[1]  Jonathan H.P. Dawes,et al.  Dynamics near a periodically-perturbed robust heteroclinic cycle , 2013 .

[2]  Georg A. Gottwald,et al.  Testing for Chaos in Deterministic Systems with Noise , 2005 .

[3]  Matthew Nicol,et al.  Hypermeander of spirals: local bifurcations and statistical properties , 2001 .

[4]  Baogui Xin,et al.  Finite-time stabilizing a fractional-order chaotic financial system with market confidence , 2015 .

[5]  Edvard Govekar,et al.  Nonlinear analysis of laser droplet generation by means of 0–1 test for chaos , 2012 .

[6]  K. Emanuel,et al.  Optimal Sites for Supplementary Weather Observations: Simulation with a Small Model , 1998 .

[7]  Daniel J. Inman,et al.  Regular and chaotic vibration in a piezoelectric energy harvester with fractional damping , 2015 .

[8]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[9]  Ben Van de Wiele,et al.  The role of disorder in the domain wall dynamics of magnetic nanostrips , 2013 .

[10]  Georg A. Gottwald,et al.  Power spectra for deterministic chaotic dynamical systems , 2007 .

[11]  Roland Zweimüller,et al.  STABLE LIMITS FOR PROBABILITY PRESERVING MAPS WITH INDIFFERENT FIXED POINTS , 2003 .

[12]  Ian Melbourne,et al.  Weak Convergence to Stable Lévy Processes for Nonuniformly Hyperbolic Dynamical Systems , 2013, 1309.6429.

[13]  Radko Kříž,et al.  Finding Chaos in Finnish GDP , 2014, Int. J. Autom. Comput..

[14]  S. Lahiri,et al.  Gottwald Melborune (0–1) test for chaos in a plasma , 2012 .

[15]  Giuseppe Grassi,et al.  An Effective Method for Detecting Chaos in fractional-Order Systems , 2010, Int. J. Bifurc. Chaos.

[16]  Jodie McVernon,et al.  Dynamical crises, multistability and the influence of the duration of immunity in a seasonally-forced model of disease transmission , 2014, Theoretical Biology and Medical Modelling.

[17]  Jodie McVernon,et al.  The dynamical consequences of seasonal forcing, immune boosting and demographic change in a model of disease transmission. , 2014, Journal of theoretical biology.

[18]  F. Takens Detecting strange attractors in turbulence , 1981 .

[19]  A. Sharma,et al.  Deterministic dynamics of the magnetosphere: results of the 0–1 test , 2013 .

[20]  Radko Kríz,et al.  Chaotic Analysis of the GDP Time Series , 2013, NOSTRADAMUS.

[21]  Keith Julien,et al.  Merger and alignment in a reduced model for three-dimensional quasigeostrophic ellipsoidal vortices , 2006 .

[22]  David Cai,et al.  Chaotic and turbulent behavior of unstable one-dimensional nonlinear dispersive waves , 2000 .

[23]  R. Sujith,et al.  A reduced-order model for the onset of combustion instability: Physical mechanisms for intermittency and precursors , 2015 .

[25]  D. A. Usikov,et al.  Weak chaos and quasi-regular patterns: Preface , 1991 .

[26]  Suzanne Smith,et al.  Characterization of noisy symbolic time series. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Baogui Xin,et al.  0-1 Test for Chaos in a Fractional Order Financial System with Investment Incentive , 2013 .

[28]  Ian Melbourne,et al.  A Huygens principle for diffusion and anomalous diffusion in spatially extended systems , 2013, Proceedings of the National Academy of Sciences.

[29]  E. Lorenz Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .

[30]  Grzegorz Litak,et al.  Identification of chaos in a regenerative cutting process by the 0‐1 test , 2009 .

[31]  Matthew Nicol,et al.  Euclidean extensions of dynamical systems , 2001 .

[32]  P. Gaspard,et al.  Sporadicity: Between periodic and chaotic dynamical behaviors. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Georg A. Gottwald,et al.  On the validity of the 0–1 test for chaos , 2009, 0906.1415.

[34]  Alexis Lugo-Fernández,et al.  Is the Loop Current a Chaotic Oscillator , 2007 .

[35]  Andrei Török,et al.  Stable ergodicity for smooth compact Lie group extensions of hyperbolic basic sets , 2005, Ergodic Theory and Dynamical Systems.

[36]  M Lakshmanan,et al.  Applicability of 0-1 test for strange nonchaotic attractors. , 2013, Chaos.

[37]  Huyi Hu,et al.  Decay of correlations for piecewise smooth maps with indifferent fixed points , 2004, Ergodic Theory and Dynamical Systems.

[38]  Mariola Kędra,et al.  Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains) , 2014 .

[39]  Grzegorz Litak,et al.  Identification of chaos in a cutting process by the 0–1 test , 2009 .

[40]  C. Liverani,et al.  A probabilistic approach to intermittency , 1999, Ergodic Theory and Dynamical Systems.

[41]  Rainer Grauer,et al.  IDENTIFICATION OF MASS CAPTURING STRUCTURES IN A PERTURBED NONLINEAR SCHRODINGER EQUATION , 1995 .

[42]  Matthew Nicol,et al.  Statistical properties of endomorphisms and compact group extensions , 2004 .

[43]  Caibin Zeng,et al.  Chaos detection and parameter identification in fractional-order chaotic systems with delay , 2013 .

[44]  K. Thamilmaran,et al.  Dynamics of SC-CNN Based Variant of MLC Circuit: An Experimental Study , 2014, Int. J. Bifurc. Chaos.

[45]  Ian Melbourne,et al.  Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensions , 2003, Ergodic Theory and Dynamical Systems.

[46]  Georg A. Gottwald,et al.  A new test for chaos in deterministic systems , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[47]  Kjetil Wormnes,et al.  Application of the 0-1 Test for Chaos to Experimental Data , 2007, SIAM J. Appl. Dyn. Syst..

[48]  Andrei Török,et al.  Statistical limit theorems for suspension flows , 2004 .

[49]  Ling Tang,et al.  Electricity price forecasts using a Curvelet denoising based approach , 2015 .

[50]  Georg A. Gottwald,et al.  Central limit theorems and suppression of anomalous diffusion for systems with symmetry , 2014, 1404.0770.

[51]  Georg A. Gottwald,et al.  On the Implementation of the 0-1 Test for Chaos , 2009, SIAM J. Appl. Dyn. Syst..

[52]  Sebastien Gouezel,et al.  Central limit theorem and stable laws for intermittent maps , 2002, math/0211117.

[53]  Edvard Govekar,et al.  Analysis of traffic dynamics on a ring road-based transportation network by means of 0–1 test for chaos and Lyapunov spectrum , 2013 .

[54]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[55]  Claire G. Gilmore,et al.  A new test for chaos , 1993 .

[56]  B Krauskopf,et al.  Dynamics of two semiconductor lasers coupled by a passive resonator. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Geoffry N Mercer,et al.  Complex behaviour in a dengue model with a seasonally varying vector population. , 2014, Mathematical biosciences.

[58]  Ian Melbourne,et al.  A test for a conjecture on the nature of attractors for smooth dynamical systems. , 2013, Chaos.

[59]  Kazuhiro Nozaki,et al.  Low-dimensional chaos in a driven damped nonlinear Schro¨dinger equation , 1986 .

[60]  Tiesong Hu,et al.  Multiple time scales analysis of runoff series based on the Chaos Theory. , 2014 .

[61]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[62]  Christian Diddens,et al.  Continuum modeling of particle redeposition during ion-beam erosion , 2013 .

[63]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[64]  Florin Leon,et al.  Design and evaluation of a multiagent interaction protocol generating behaviours with different levels of complexity , 2014, Neurocomputing.

[65]  Günter Radons,et al.  Nonlinear dynamics of complex hysteretic systems: Oscillator in a magnetic field , 2013 .

[66]  Karsten Webel Chaos in German stock returns — New evidence from the 0–1 test , 2012 .

[67]  O. Rössler An equation for continuous chaos , 1976 .

[68]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[69]  Ian Melbourne,et al.  Comment on "Reliability of the 0-1 test for chaos". , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  Leonard A. Smith,et al.  Visualizing bifurcations in High Dimensional Systems: the Spectral bifurcation Diagram , 2003, Int. J. Bifurc. Chaos.

[71]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[72]  Loukas Zachilas,et al.  Examining the Chaotic Behavior in Dynamical Systems by Means of the 0-1 Test , 2012, J. Appl. Math..

[73]  Grzegorz Litak,et al.  Identification of regular and chaotic isothermal trajectories of a shape memory oscillator using the 0–1 test , 2013 .

[74]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[75]  Radko Kříž,et al.  Analyses of the Chaotic Behavior of the Electricity Price Series , 2014 .