Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits

[1]  I. Kaufman The Cerebral Cortex of Man: A Clinical Study of Localization of Function , 1951 .

[2]  W. Fry,et al.  Production of reversible changes in the central nervous system by ultrasound. , 1958, Science.

[3]  D. Oesterhelt,et al.  Rhodopsin-like protein from the purple membrane of Halobacterium halobium. , 1971, Nature: New biology.

[4]  D. Oesterhelt,et al.  Functions of a new photoreceptor membrane. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Y. Mukohata,et al.  Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. , 1977, Biochemical and biophysical research communications.

[6]  Y. Mukohata,et al.  ATP synthesis linked to light-dependent proton uptake in a rad mutant strain of Halobacterium lacking bacteriorhodopsin. , 1980, Archives of biochemistry and biophysics.

[7]  Y. Mukohata,et al.  Light-induced membrane-potential increase, ATP synthesis, and proton uptake in Halobacterium halobium, R1mR catalyzed by halorhodopsin: Effects of N,N'-dicyclohexylcarbodiimide, triphenyltin chloride, and 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). , 1981, Archives of biochemistry and biophysics.

[8]  B. Schobert,et al.  Halorhodopsin is a light-driven chloride pump. , 1982, The Journal of biological chemistry.

[9]  A. Barker,et al.  NON-INVASIVE MAGNETIC STIMULATION OF HUMAN MOTOR CORTEX , 1985, The Lancet.

[10]  K. Ikeda,et al.  Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  Richard F. Thompson,et al.  Localization of a memory trace in the mammalian brain. , 1993, Science.

[12]  S. Benzer,et al.  Behavioral genetics of thermosensation and hygrosensation in Drosophila. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Benabid,et al.  Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. , 1998, The New England journal of medicine.

[14]  A. Basbaum,et al.  The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing Stimuli , 1998, Neuron.

[15]  F. Kawasaki,et al.  Fast synaptic fatigue in shibire mutants reveals a rapid requirement for dynamin in synaptic vesicle membrane trafficking , 2000, Nature Neuroscience.

[16]  M. Nitsche,et al.  Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans , 2001, Neurology.

[17]  T. Kitamoto Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. , 2001, Journal of neurobiology.

[18]  K. Spectrophotometric Identification of the Pigment Associated with Light-driven Primary Sodium Translocation in Halobacterium halobium ” , 2001 .

[19]  B. Zemelman,et al.  Selective Photostimulation of Genetically ChARGed Neurons , 2002, Neuron.

[20]  P. McIntyre,et al.  A TRP Channel that Senses Cold Stimuli and Menthol , 2002, Cell.

[21]  D. McKemy,et al.  Identification of a cold receptor reveals a general role for TRP channels in thermosensation , 2002, Nature.

[22]  B. Zemelman,et al.  Photochemical gating of heterologous ion channels: Remote control over genetically designated populations of neurons , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. McKemy,et al.  Lessons from peppers and peppermint: the molecular logic of thermosensation , 2003, Current Opinion in Neurobiology.

[24]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Patapoutian,et al.  Ion channels: Opposite thermosensor in fruitfly and mouse , 2003, Nature.

[26]  W. Newsome,et al.  What electrical microstimulation has revealed about the neural basis of cognition , 2004, Current Opinion in Neurobiology.

[27]  M. Tominaga,et al.  Thermosensation and pain. , 2004, Journal of neurobiology.

[28]  E. Isacoff,et al.  Light-activated ion channels for remote control of neuronal firing , 2004, Nature Neuroscience.

[29]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[30]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[31]  H. Chiel,et al.  Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  P. Konrad,et al.  Optical stimulation of neural tissue in vivo. , 2005, Optics letters.

[33]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[34]  T. Ishizuka,et al.  Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels , 2006, Neuroscience Research.

[35]  E. Isacoff,et al.  Allosteric control of an ionotropic glutamate receptor with an optical switch , 2006, Nature chemical biology.

[36]  G. Nagel,et al.  Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae , 2006, Current Biology.

[37]  A. Patapoutian,et al.  Trp ion channels and temperature sensation. , 2006, Annual review of neuroscience.

[38]  Wei Zhang,et al.  A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2‐mediated photoactivation of targeted neurons , 2007, The European journal of neuroscience.

[39]  Feng Zhang,et al.  An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology , 2007, Journal of neural engineering.

[40]  S. Shoham,et al.  Patterned Optical Activation of Retinal Ganglion Cells , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[41]  Benjamin R. Arenkiel,et al.  In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.

[42]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[43]  K. Deisseroth,et al.  Neural substrates of awakening probed with optogenetic control of hypocretin neurons , 2007, Nature.

[44]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[45]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[46]  K. Deisseroth,et al.  eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications , 2008, Brain cell biology.

[47]  PDF Cells Are a GABA-Responsive Wake-Promoting Component of the Drosophila Sleep Circuit , 2008, Neuron.

[48]  S. Edwards,et al.  A Novel Molecular Solution for Ultraviolet Light Detection in Caenorhabditis elegans , 2008, PLoS biology.

[49]  K. Deisseroth,et al.  Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri , 2008, Nature Neuroscience.

[50]  G. Miesenböck,et al.  Sex-Specific Control and Tuning of the Pattern Generator for Courtship Song in Drosophila , 2008, Cell.

[51]  K. Svoboda,et al.  Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice , 2008, Nature.

[52]  R. Masland,et al.  Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin , 2008, Proceedings of the National Academy of Sciences.

[53]  S. Sternson,et al.  A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-Range Circuit Mapping , 2008, The Journal of Neuroscience.

[54]  Z. J. Huang,et al.  High-Resolution Labeling and Functional Manipulation of Specific Neuron Types in Mouse Brain by Cre-Activated Viral Gene Expression , 2008, PloS one.

[55]  F. Engert,et al.  Escape Behavior Elicited by Single, Channelrhodopsin-2-Evoked Spikes in Zebrafish Somatosensory Neurons , 2008, Current Biology.

[56]  M. Zhen,et al.  Optogenetic analysis of synaptic function , 2008, Nature Methods.

[57]  Douglas S Kim,et al.  Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration , 2008, Nature Neuroscience.

[58]  M. Brauner,et al.  Intestinal signaling to GABAergic neurons regulates a rhythmic behavior in Caenorhabditis elegans , 2008, Proceedings of the National Academy of Sciences.

[59]  T. Dick,et al.  Light-Induced Rescue of Breathing after Spinal Cord Injury , 2008, The Journal of Neuroscience.

[60]  Stefan R. Pulver,et al.  An internal thermal sensor controlling temperature preference in Drosophila , 2008, Nature.

[61]  P. Greengard,et al.  Writing Memories with Light-Addressable Reinforcement Circuitry , 2009, Cell.

[62]  K. Svoboda,et al.  Myosin-dependent targeting of transmembrane proteins to neuronal dendrites , 2009, Nature Neuroscience.

[63]  Susana Q. Lima,et al.  PINP: A New Method of Tagging Neuronal Populations for Identification during In Vivo Electrophysiological Recording , 2009, PloS one.

[64]  Julie H. Simpson,et al.  Mapping and manipulating neural circuits in the fly brain. , 2009, Advances in genetics.

[65]  Jing Yao,et al.  Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies. , 2009, Biophysical journal.

[66]  Shamik Dasgupta,et al.  A Neural Circuit Mechanism Integrating Motivational State with Memory Expression in Drosophila , 2009, Cell.

[67]  K. Deisseroth,et al.  Bi-stable neural state switches , 2009, Nature Neuroscience.

[68]  Ethan K. Scott,et al.  Optogenetic dissection of a behavioral module in the vertebrate spinal cord , 2009, Nature.

[69]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[70]  Stefan R. Pulver,et al.  Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. , 2009, Journal of neurophysiology.

[71]  N. Peabody,et al.  Characterization of the Decision Network for Wing Expansion in Drosophila Using Targeted Expression of the TRPM8 Channel , 2009, The Journal of Neuroscience.

[72]  Jacob G. Bernstein,et al.  Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain , 2009, Neuron.

[73]  T. Ishizuka,et al.  Molecular Determinants Differentiating Photocurrent Properties of Two Channelrhodopsins from Chlamydomonas* , 2009, Journal of Biological Chemistry.

[74]  D. Tank,et al.  Two-photon excitation of channelrhodopsin-2 at saturation , 2009, Proceedings of the National Academy of Sciences.

[75]  Michael Z. Lin,et al.  Characterization of engineered channelrhodopsin variants with improved properties and kinetics. , 2009, Biophysical journal.

[76]  A. Morel,et al.  High‐intensity focused ultrasound for noninvasive functional neurosurgery , 2009, Annals of neurology.

[77]  E. Bamberg,et al.  Channelrhodopsin-2 is a leaky proton pump , 2009, Proceedings of the National Academy of Sciences.

[78]  Sudha Kumari,et al.  Endocytosis unplugged: multiple ways to enter the cell , 2010, Cell Research.

[79]  Raag D. Airan,et al.  Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures , 2010, Nature Protocols.

[80]  Robert A. Carrillo,et al.  Presynaptic Activity and CaMKII Modulate Retrograde Semaphorin Signaling and Synaptic Refinement , 2010, Neuron.

[81]  Heng Huang,et al.  Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. , 2010, Nature nanotechnology.

[82]  E. Bamberg,et al.  Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. , 2010, Biochemistry.

[83]  Aristides B. Arrenberg,et al.  Optogenetic Control of Cardiac Function , 2010, Science.

[84]  S. Tillery,et al.  Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits , 2010, Neuron.

[85]  L. Looger,et al.  Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall , 2010, Nature.

[86]  K. Deisseroth,et al.  Astrocytes Control Breathing Through pH-Dependent Release of ATP , 2010, Science.

[87]  T. Bruegmann,et al.  Optogenetic control of heart muscle in vitro and in vivo , 2010, Nature Methods.

[88]  K. Deisseroth,et al.  Ultrafast optogenetic control , 2010, Nature Neuroscience.

[89]  B. Zemelman,et al.  Two-photon single-cell optogenetic control of neuronal activity by sculpted light , 2010, Proceedings of the National Academy of Sciences.

[90]  T. Ishizuka,et al.  Opto-Current-Clamp Actuation of Cortical Neurons Using a Strategically Designed Channelrhodopsin , 2010, PloS one.

[91]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[92]  A. Zorzos,et al.  Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. , 2010, Optics letters.

[93]  E. Isacoff,et al.  Scanless two-photon excitation of channelrhodopsin-2 , 2010, Nature Methods.

[94]  Xue Han,et al.  High-performance genetically targetable optical neural silencing by proton pumps , 2010 .

[95]  Aravinthan D. T. Samuel,et al.  Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans , 2011, Nature Methods.

[96]  K. Deisseroth,et al.  High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels , 2011, Proceedings of the National Academy of Sciences.

[97]  K. J. Fogle,et al.  CRYPTOCHROME Is a Blue-Light Sensor That Regulates Neuronal Firing Rate , 2011, Science.

[98]  B. Zemelman,et al.  The columnar and laminar organization of inhibitory connections to neocortical excitatory cells , 2010, Nature Neuroscience.

[99]  Alice M Stamatakis,et al.  Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. , 2011, Nature.

[100]  Nathan C. Klapoetke,et al.  A High-Light Sensitivity Optical Neural Silencer: Development and Application to Optogenetic Control of Non-Human Primate Cortex , 2010, Front. Syst. Neurosci..

[101]  Edward S. Boyden,et al.  A history of optogenetics: the development of tools for controlling brain circuits with light , 2011, F1000 biology reports.

[102]  E. Bamberg,et al.  Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh , 2011, Nature Neuroscience.

[103]  J. Spudich,et al.  New Channelrhodopsin with a Red-Shifted Spectrum and Rapid Kinetics from Mesostigma viride , 2011, mBio.

[104]  Dan D. Stettler,et al.  Driving Opposing Behaviors with Ensembles of Piriform Neurons , 2011, Cell.

[105]  F. Werblin,et al.  Differential Targeting of Optical Neuromodulators to Ganglion Cell Soma and Dendrites Allows Dynamic Control of Center-Surround Antagonism , 2011, Neuron.

[106]  Salil S. Bidaye,et al.  Neuronal Control of Drosophila Courtship Song , 2011, Neuron.

[107]  Soh Kohatsu,et al.  Female Contact Activates Male-Specific Interneurons that Trigger Stereotypic Courtship Behavior in Drosophila , 2011, Neuron.

[108]  Alex Rodriguez,et al.  A wirelessly powered and controlled device for optical neural control of freely-behaving animals , 2011, Journal of neural engineering.