Relative equilibria of D2H + and H2D+

Relative equilibria of molecules are classical trajectories corresponding to steady rotations about stationary axes during which the shape of the molecule does not change. They can be used to explain and predict features of quantum spectra at high values of the total angular momentum J in much the same way that absolute equilibria are used at low J. This paper gives a classification of the symmetry types of relative equilibria of AB2 molecules and computes the relative equilibria bifurcation diagrams and normal mode frequencies for D2H+ and H2D+. These are then fed into a harmonic quantization procedure to produce a number of predictions concerning the structures of energy level clusters and their rearrangements as J increases. In particular the formation of doublet pairs is predicted for H2D+ from J ≈ 26.

[1]  J. Tennyson,et al.  Symmetry and structure of rotating H 3 , 1999 .

[2]  R. A. Kennedy,et al.  Infrared predissociation spectrum of the H+3 ion , 1998 .

[3]  J. Makarewicz Rovibrational energy surfaces of triatomic water-like molecules , 1998 .

[4]  I. Pavlichenkov,et al.  Bifurcation in the rotational spectra of nonlinear symmetric triatomic molecules , 1997 .

[5]  Jensen,et al.  The Rotational Spectrum of H2Te , 1996, Journal of molecular spectroscopy.

[6]  Mark A. Miller,et al.  Structure, rearrangements and evaporation of rotating atomic clusters , 1996 .

[7]  L. L. Lohr Energies and Structures of Rotating Argon Clusters: Analytic Descriptions and Numerical Simulations , 1996 .

[8]  J. Tennyson,et al.  Spectroscopically determined Born–Oppenheimer and adiabatic surfaces for H3+, H2D+, D2H+, and D3+ , 1995 .

[9]  I. Pavlichenkov,et al.  Bifurcation in rotational spectra of nonlinear AB2 molecules , 1995, chem-ph/9507005.

[10]  Jensen,et al.  Fourfold Clusters of Rovibrational Energies in H2Po Studied with an ab Initio Potential Energy Function , 1995, Journal of molecular spectroscopy.

[11]  David Crisp,et al.  The Infrared Spectrum of H2S From 1 to 5 Microns , 1994 .

[12]  P. Jensen,et al.  The Molecular Symmetry Group for Molecules in High Angular Momentum States , 1994 .

[13]  W. Harter,et al.  Principles of Symmetry, Dynamics, and Spectroscopy , 1993 .

[14]  P. Jensen,et al.  Fourfold Clusters of Rovibrational Energy Levels in the Fundamental Vibrational States of H2Se , 1993 .

[15]  P. Jensen,et al.  The far-infrared Fourier transform spectrum of H2Se , 1993 .

[16]  K. Lehmann The interaction of rotation and local mode tunneling in the overtone spectra of symmetrical hydrides , 1991 .

[17]  A. V. Chambers,et al.  Barrier effects on the vibrational predissociation of HD2 , 1988 .

[18]  E. Pollak,et al.  Bound states embedded in the continuum of H+3 , 1988 .

[19]  O. Polyansky,et al.  Improved analysis of the experimental data on the H2D+ and D2H+ absorption spectra , 1988 .

[20]  E. Pollak Total angular momentum barriers for triatomic systems , 1987 .

[21]  C. W. Patterson,et al.  Rotational energy surfaces and high‐J eigenvalue structure of polyatomic molecules , 1984 .

[22]  J. Watson,et al.  The vibration-rotation hamiltonian of linear molecules , 1970 .

[23]  R. Littlejohn,et al.  Gauge fields in the separation of rotations and internal motions in the n-body problem , 1997 .

[24]  J. Tennyson,et al.  Rotational levels of H2D : variational calculations and assignments , 1993 .

[25]  J. Watson,et al.  Observation and analysis of the ν2 and ν3 fundamental bands of the D2H+ ion , 1986 .

[26]  P. Bunker,et al.  Molecular symmetry and spectroscopy , 1979 .

[27]  E. Wigner,et al.  Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .