Modeling Chinese stock returns with stable distribution
暂无分享,去创建一个
Yucheng Dong | Weidong Xu | Chongfeng Wu | Weilin Xiao | Yucheng Dong | Weilin Xiao | Chongfeng Wu | Weidong Xu
[1] Yaozhong Hu,et al. Least squares estimator for Ornstein―Uhlenbeck processes driven by α-stable motions , 2009 .
[2] T. Kozubowski,et al. Multivariate geometric stable distributions in financial applications , 1999 .
[3] Koichi Maekawa,et al. Jump diffusion model with application to the Japanese stock market , 2008, Math. Comput. Simul..
[4] E. Fama,et al. Some Properties of Symmetric Stable Distributions , 1968 .
[5] Nicholas G. Polson,et al. Evidence for and the Impact of Jumps in Volatility and Returns , 2001 .
[6] R. C. Merton,et al. Option pricing when underlying stock returns are discontinuous , 1976 .
[7] Douglas B. Williams,et al. Characteristic function based estimation of stable distribution parameters , 1998 .
[8] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[9] J. McCulloch,et al. Estimation of stable spectral measures , 2001 .
[10] J. Nolan,et al. Modeling financial data with stable distributions , 2003 .
[11] Jun Pan. The jump-risk premia implicit in options: evidence from an integrated time-series study $ , 2002 .
[12] Svetlozar T. Rachev,et al. Option pricing for a logstable asset price model , 1999 .
[13] S. J. Press,et al. Applied Multivariate Analysis. , 1973 .
[14] Hongyi Li,et al. A study of Greek letters of currency option under uncertainty environments , 2010, Math. Comput. Model..
[15] S. James Press,et al. Estimation in Univariate and Multivariate Stable Distributions , 1972 .
[16] J. McCulloch,et al. Simple consistent estimators of stable distribution parameters , 1986 .
[17] Ivilina Popova,et al. On Bounding Option Prices in Paretian Stable Markets , 1998 .
[18] Tomasz J. Kozubowski,et al. Geometric stable laws: Estimation and applications , 1999 .
[19] Yaozhong Hu,et al. On the singularity of least squares estimator for mean-reverting α-stable motions , 2009 .
[20] Peter H. Ritchken,et al. Option pricing bounds in an a α stable security market , 1997 .
[21] E. Fama,et al. Parameter Estimates for Symmetric Stable Distributions , 1971 .
[22] Jun Pan. The Jump-Risk Premia Implicit in Options : Evidence from an Integrated Time-Series Study , 2001 .
[23] I. A. Koutrouvelis. An iterative procedure for the estimation of the parameters of stable laws , 1981 .
[24] V. Zolotarev. One-dimensional stable distributions , 1986 .
[25] Ioannis A. Koutrouvelis,et al. Regression-Type Estimation of the Parameters of Stable Laws , 1980 .
[26] Steven Kou,et al. A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..
[27] Weijun Xu,et al. Dynamic asset allocation with jump risk , 2010 .
[28] Tomasz J. Kozubowski,et al. Simulation of geometric stable and other limiting multivariate distributions arising in random summation scheme , 1999 .
[29] Norman Strong,et al. Pricing FTSE 100 Index Options under Stochastic Volatility , 1999 .
[30] P. Carr,et al. The Finite Moment Log Stable Process and Option Pricing , 2003 .
[31] R. Cont,et al. Financial Modelling with Jump Processes , 2003 .
[32] Rafał Weron. Performance of the estimators of stable law parameters , 1995 .
[33] J. L. Nolan,et al. Numerical calculation of stable densities and distribution functions: Heavy tails and highly volatil , 1997 .