Modeling Chinese stock returns with stable distribution

In this paper we demonstrate that an @a-stable distribution is better fitted to Chinese stock return data in the Shanghai Composite Index and the Shenzhen Component Index than the classical Black-Scholes model. The sample quantile method developed by McCulloch [J.H. McCulloch, Simple consistent estimators of stable distribution parameters, Communications in Statistics-Simulation and Computation 15 (4) (1986) 1109-1136] is used to estimate the @a-stable distribution for the Shanghai Composite Index and the Shenzhen Component Index. The empirical results show that the asymmetric leptokurtic features presented in the Shanghai Composite Index and Shenzhen Component Index returns can be captured by an @a-stable law.

[1]  Yaozhong Hu,et al.  Least squares estimator for Ornstein―Uhlenbeck processes driven by α-stable motions , 2009 .

[2]  T. Kozubowski,et al.  Multivariate geometric stable distributions in financial applications , 1999 .

[3]  Koichi Maekawa,et al.  Jump diffusion model with application to the Japanese stock market , 2008, Math. Comput. Simul..

[4]  E. Fama,et al.  Some Properties of Symmetric Stable Distributions , 1968 .

[5]  Nicholas G. Polson,et al.  Evidence for and the Impact of Jumps in Volatility and Returns , 2001 .

[6]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[7]  Douglas B. Williams,et al.  Characteristic function based estimation of stable distribution parameters , 1998 .

[8]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[9]  J. McCulloch,et al.  Estimation of stable spectral measures , 2001 .

[10]  J. Nolan,et al.  Modeling financial data with stable distributions , 2003 .

[11]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study $ , 2002 .

[12]  Svetlozar T. Rachev,et al.  Option pricing for a logstable asset price model , 1999 .

[13]  S. J. Press,et al.  Applied Multivariate Analysis. , 1973 .

[14]  Hongyi Li,et al.  A study of Greek letters of currency option under uncertainty environments , 2010, Math. Comput. Model..

[15]  S. James Press,et al.  Estimation in Univariate and Multivariate Stable Distributions , 1972 .

[16]  J. McCulloch,et al.  Simple consistent estimators of stable distribution parameters , 1986 .

[17]  Ivilina Popova,et al.  On Bounding Option Prices in Paretian Stable Markets , 1998 .

[18]  Tomasz J. Kozubowski,et al.  Geometric stable laws: Estimation and applications , 1999 .

[19]  Yaozhong Hu,et al.  On the singularity of least squares estimator for mean-reverting α-stable motions , 2009 .

[20]  Peter H. Ritchken,et al.  Option pricing bounds in an a α stable security market , 1997 .

[21]  E. Fama,et al.  Parameter Estimates for Symmetric Stable Distributions , 1971 .

[22]  Jun Pan The Jump-Risk Premia Implicit in Options : Evidence from an Integrated Time-Series Study , 2001 .

[23]  I. A. Koutrouvelis An iterative procedure for the estimation of the parameters of stable laws , 1981 .

[24]  V. Zolotarev One-dimensional stable distributions , 1986 .

[25]  Ioannis A. Koutrouvelis,et al.  Regression-Type Estimation of the Parameters of Stable Laws , 1980 .

[26]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[27]  Weijun Xu,et al.  Dynamic asset allocation with jump risk , 2010 .

[28]  Tomasz J. Kozubowski,et al.  Simulation of geometric stable and other limiting multivariate distributions arising in random summation scheme , 1999 .

[29]  Norman Strong,et al.  Pricing FTSE 100 Index Options under Stochastic Volatility , 1999 .

[30]  P. Carr,et al.  The Finite Moment Log Stable Process and Option Pricing , 2003 .

[31]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[32]  Rafał Weron Performance of the estimators of stable law parameters , 1995 .

[33]  J. L. Nolan,et al.  Numerical calculation of stable densities and distribution functions: Heavy tails and highly volatil , 1997 .