Variable tellurite resistance profiles of clinically-relevant Shiga toxin-producing Escherichia coli (STEC) influence their recovery from foodstuffs.

[1]  L. Alfredsson,et al.  The Association between Job Strain and Atrial Fibrillation: Results from the Swedish WOLF Study , 2015, BioMed research international.

[2]  T. Hammack,et al.  Comparison of eight different agars for the recovery of clinically relevant non-O157 Shiga toxin-producing Escherichia coli from baby spinach, cilantro, alfalfa sprouts and raw milk. , 2015, Food microbiology.

[3]  M. Sircili,et al.  Locus of Enterocyte Effacement: A Pathogenicity Island Involved in the Virulence of Enteropathogenic and Enterohemorragic Escherichia coli Subjected to a Complex Network of Gene Regulation , 2015, BioMed research international.

[4]  É. Gay,et al.  Prevalence of Carriage of Shiga Toxin-Producing Escherichia coli Serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 among Slaughtered Adult Cattle in France , 2014, Applied and Environmental Microbiology.

[5]  V. Vaillant,et al.  Foodborne transmission of sorbitol-fermenting Escherichia coli O157:[H7] via ground beef: an outbreak in northern France, 2011. , 2014, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[6]  F. Navarro-Garcia,et al.  Escherichia coli O104:H4 Pathogenesis: an Enteroaggregative E. coli/Shiga Toxin-Producing E. coli Explosive Cocktail of High Virulence , 2014, Microbiology spectrum.

[7]  L. Beutin,et al.  Detection of Shiga Toxin-Producing Escherichia coli from Nonhuman Sources and Strain Typing , 2014, Microbiology spectrum.

[8]  L. Beutin,et al.  Discrimination of Enterohemorrhagic Escherichia coli (EHEC) from Non-EHEC Strains Based on Detection of Various Combinations of Type III Effector Genes , 2013, Journal of Clinical Microbiology.

[9]  Shaohua Zhao,et al.  Distribution of Pathogenicity Islands OI-122, OI-43/48, and OI-57 and a High-Pathogenicity Island in Shiga Toxin-Producing Escherichia coli , 2013, Applied and Environmental Microbiology.

[10]  F. Weill,et al.  Evaluation of CHROMagar STEC and STEC O104 Chromogenic Agar Media for Detection of Shiga Toxin-Producing Escherichia coli in Stool Specimens , 2013, Journal of Clinical Microbiology.

[11]  C. Prigent-Combaret,et al.  The bacterial thiopurine methyltransferase tellurite resistance process is highly dependent upon aggregation properties and oxidative stress response. , 2012, Environmental microbiology.

[12]  P. Fratamico,et al.  Isolation of Shiga toxin-producing Escherichia coli serogroups O26, O45, O103, O111, O121, and O145 from ground beef using modified rainbow agar and post-immunomagnetic separation acid treatment. , 2012, Journal of food protection.

[13]  A. Siitonen,et al.  Usability and Performance of CHROMagar STEC Medium in Detection of Shiga Toxin-Producing Escherichia coli Strains , 2012, Journal of Clinical Microbiology.

[14]  V. Vaillant,et al.  Outbreak of Shiga toxin-producing Escherichia coli O104:H4 associated with organic fenugreek sprouts, France, June 2011. , 2012, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[15]  Eric S. Lander,et al.  Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011 , 2012, Proceedings of the National Academy of Sciences.

[16]  L. Beutin,et al.  A rapid procedure for the detection and isolation of enterohaemorrhagic Escherichia coli (EHEC) serogroup O26, O103, O111, O118, O121, O145 and O157 strains and the aggregative EHEC O104:H4 strain from ready-to-eat vegetables. , 2012, International journal of food microbiology.

[17]  J. Rothberg,et al.  Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology , 2011, PloS one.

[18]  V. Lushchak Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. , 2011, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[19]  M. Widdowson,et al.  Foodborne Illness Acquired in the United States—Major Pathogens , 2011, Emerging infectious diseases.

[20]  A. Mellmann,et al.  Enterohemorrhagic Escherichia coli O26:H11-Associated Hemolytic Uremic Syndrome: Bacteriology and Clinical Presentation. , 2010, Seminars in thrombosis and hemostasis.

[21]  L. Hontz,et al.  Non-O157 Shiga toxin-producing Escherichia coli in foods. , 2010, Journal of food protection.

[22]  V. Gannon,et al.  Verocytotoxin-producing Escherichia coli (VTEC). , 2010, Veterinary microbiology.

[23]  M. Karmali Host and pathogen determinants of verocytotoxin-producing Escherichia coli-associated hemolytic uremic syndrome. , 2009, Kidney international. Supplement.

[24]  V. Vaillant,et al.  Community-wide outbreak of Escherichia coli O157:H7 associated with consumption of frozen beef burgers , 2008, Epidemiology and Infection.

[25]  L. Herman,et al.  Novel differential and confirmation plating media for Shiga toxin-producing Escherichia coli serotypes O26, O103, O111, O145 and sorbitol-positive and -negative O157. , 2008, FEMS microbiology letters.

[26]  B. Finlay,et al.  Molecular Analysis as an Aid To Assess the Public Health Risk of Non-O157 Shiga Toxin-Producing Escherichia coli Strains , 2008, Applied and Environmental Microbiology.

[27]  P. Teunis,et al.  Hierarchical dose response of E. coli O157:H7 from human outbreaks incorporating heterogeneity in exposure , 2007, Epidemiology and Infection.

[28]  M. Turner,et al.  Inactivation of an iron transporter in Lactococcus lactis results in resistance to tellurite and oxidative stress. , 2007, Applied and environmental microbiology.

[29]  M. Dierich,et al.  Variability in tellurite resistance and the ter gene cluster among Shiga toxin-producing Escherichia coli isolated from humans, animals and food. , 2007, Research in microbiology.

[30]  M. Dierich,et al.  Sorbitol-fermenting Shiga toxin-producing Escherichia coli O157: indications for an animal reservoir , 2005, Epidemiology and Infection.

[31]  V. Vaillant,et al.  Escherichia coli O157 outbreak associated with fresh unpasteurized goats' cheese , 2005, Epidemiology and Infection.

[32]  A. Caprioli,et al.  Enterohaemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission. , 2005, Veterinary research.

[33]  P. Tarr,et al.  Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome , 2005, The Lancet.

[34]  H. Karch,et al.  Phenotypic and Molecular Analysis of Tellurite Resistance among Enterohemorrhagic Escherichia coli O157:H7 and Sorbitol-Fermenting O157:NM Clinical Isolates , 2005, Journal of Clinical Microbiology.

[35]  P. Teunis,et al.  Dose Response for Infection by Escherichia coli O157:H7 from Outbreak Data , 2004, Risk analysis : an official publication of the Society for Risk Analysis.

[36]  L. Beutin,et al.  Serotyping, stx2 Subtyping, and Characterization of the Locus of Enterocyte Effacement Island of Shiga Toxin-Producing Escherichia coli and E. coli O157:H7 Strains Isolated from the Environment in France , 2004, Applied and Environmental Microbiology.

[37]  Harry L. T. Mobley,et al.  Pathogenic Escherichia coli , 2004, Nature Reviews Microbiology.

[38]  J. Kaper,et al.  Association of Genomic O Island 122 of Escherichia coli EDL 933 with Verocytotoxin-Producing Escherichia coli Seropathotypes That Are Linked to Epidemic and/or Serious Disease , 2003, Journal of Clinical Microbiology.

[39]  L. Beutin,et al.  Genetic Diversity of Intimin Genes of Attaching and Effacing Escherichia coli Strains , 2002, Journal of Clinical Microbiology.

[40]  N. Perna,et al.  Genomic Variability of O Islands Encoding Tellurite Resistance in Enterohemorrhagic Escherichia coli O157:H7 Isolates , 2002, Journal of bacteriology.

[41]  Yasumoto Suzuki,et al.  Characterization of Shiga Toxin-Producing Escherichia coli O26 Strains and Establishment of Selective Isolation Media for These Strains , 2002, Journal of Clinical Microbiology.

[42]  N. Strachan,et al.  Modelling the vector pathway and infection of humans in an environmental outbreak of Escherichia coli O157. , 2001, FEMS microbiology letters.

[43]  N. W. Davis,et al.  Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 , 2001, Nature.

[44]  J. Weiner,et al.  Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. , 2001, Canadian journal of microbiology.

[45]  M. Hattori,et al.  Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. , 2001, DNA research : an international journal for rapid publication of reports on genes and genomes.

[46]  E. Cabiscol,et al.  Oxidative stress in bacteria and protein damage by reactive oxygen species. , 2000, International microbiology : the official journal of the Spanish Society for Microbiology.

[47]  D. Taylor,et al.  Bacterial tellurite resistance. , 1999, Trends in microbiology.

[48]  W. L. Payne,et al.  High Mutation Frequencies Among Escherichia coli and Salmonella Pathogens , 1996, Science.

[49]  C. Siddons,et al.  Use of tellurite for the selection of verocytotoxigenic Escherichia coli O157. , 1993, Journal of medical microbiology.

[50]  H. Cavé,et al.  Identification of a clone of Escherichia coli O103:H2 as a potential agent of hemolytic-uremic syndrome in France , 1993, Journal of clinical microbiology.

[51]  G. N. Lance,et al.  Computer Programs for Hierarchical Polythetic Classification ("Similarity Analyses") , 1966, Comput. J..

[52]  Robert R. Sokal,et al.  A statistical method for evaluating systematic relationships , 1958 .