Do Ants Use Ant Colony Optimization

Ant Colony Optimization (ACO) is a widespread optimization technique used to solve complex problems in a broad range of fields, including engineering, software development and logistics. It was inspired by the behaviour of ants which can collectively select the shorter of two paths leading to a food source. They are able to do so even without any single ant comparing the lengths of the two paths. Ants, like other eusocial insects, have no central authority to coordinate the sophisticated and complex work of their colony members. Coordination is achieved through self-organization, principles of which inspired the development of ACO algorithms. Here we discuss both the similarities and the considerable differences between the behaviour of real ant colonies and techniques used by ACO. We also describe some of the latest findings in ant research and how they may contribute to new ACO algorithms.

[1]  J. Deneubourg,et al.  Modulation of trail laying in the antLasius niger (Hymenoptera: Formicidae) and its role in the collective selection of a food source , 1993, Journal of Insect Behavior.

[2]  J. Korb Termite Mound Architecture, from Function to Construction , 2010 .

[3]  C. Detrain,et al.  How does food distance influence foraging in the ant Lasius niger: the importance of home-range marking , 2005, Insectes Sociaux.

[4]  F. Ratnieks,et al.  Decision making in ant foragers (Lasius niger) facing conflicting private and social information , 2011, Behavioral Ecology and Sociobiology.

[5]  S. Key,et al.  Trail-following responses of the Argentine ant,Iridomyrmex humilis (Mayr), to a synthetic trail pheromone component and analogs , 2004, Journal of Chemical Ecology.

[6]  W. Hangartner Spezifität und Inaktivierung des Spurpheromons von Lasius fuliginosus Latr. und Orientierung der Arbeiterinnen im Duftfeld , 1967, Zeitschrift für vergleichende Physiologie.

[7]  J. Deneubourg,et al.  Emergent polyethism as a consequence of increased colony size in insect societies. , 2002, Journal of theoretical biology.

[8]  T. Czaczkes,et al.  Composite collective decision-making , 2015, Proceedings of the Royal Society B: Biological Sciences.

[9]  J. Deneubourg,et al.  Collective decision making through food recruitment , 1990, Insectes Sociaux.

[10]  J. Deneubourg,et al.  Trails and U-turns in the Selection of a Path by the Ant Lasius niger , 1992 .

[11]  Dong-Hwan Choe,et al.  Pheromone communication in ants: a detailed analysis of concentration-dependent decisions in three species , 2014, Behavioral Ecology and Sociobiology.

[12]  J. Deneubourg,et al.  Memory and chemical communication in the orientation of two mass-recruiting ant species , 1993, Insectes Sociaux.

[13]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[14]  F. Ratnieks,et al.  Trail pheromones: an integrative view of their role in social insect colony organization. , 2015, Annual review of entomology.

[15]  D. Sumpter,et al.  Optimisation in a natural system: Argentine ants solve the Towers of Hanoi , 2011, Journal of Experimental Biology.

[16]  Alex Alves Freitas,et al.  Data mining with an ant colony optimization algorithm , 2002, IEEE Trans. Evol. Comput..

[17]  Ahmed El Hilali Alaoui,et al.  Improved Ant Colony Algorithm to Solve the Aircraft Landing Problem , 2011 .

[18]  J. Deneubourg,et al.  Self-organized shortcuts in the Argentine ant , 1989, Naturwissenschaften.

[19]  E. Bonabeau,et al.  Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  Guy Theraulaz,et al.  Path efficiency of ant foraging trails in an artificial network. , 2006, Journal of theoretical biology.

[21]  F. Ratnieks,et al.  Ant foraging on complex trails: route learning and the role of trail pheromones in Lasius niger , 2013, Journal of Experimental Biology.

[22]  Thomas Stützle,et al.  Ant Colony Optimization: Overview and Recent Advances , 2018, Handbook of Metaheuristics.

[23]  Deborah M. Gordon,et al.  Fast and Flexible: Argentine Ants Recruit from Nearby Trails , 2013, PloS one.

[24]  R. Wehner,et al.  The Ant Odometer: Stepping on Stilts and Stumps , 2006, Science.

[25]  Tomer J Czaczkes,et al.  How to not get stuck-negative feedback due to crowding maintains flexibility in ant foraging. , 2014, Journal of theoretical biology.

[26]  Raphaël Jeanson,et al.  Interindividual variability in social insects – proximate causes and ultimate consequences , 2014, Biological reviews of the Cambridge Philosophical Society.

[27]  Tanya Latty,et al.  Argentine ants (Linepithema humile) use adaptable transportation networks to track changes in resource quality , 2017, Journal of Experimental Biology.

[28]  P. Graham,et al.  The Sensory Ecology of Ant Navigation: From Natural Environments to Neural Mechanisms. , 2016, Annual review of entomology.

[29]  B. Hölldobler,et al.  The chemistry of social regulation: multicomponent signals in ant societies. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Preference for straight-line paths in recruitment trail formation of the Argentine ant, Linepithema humile , 2016, Insectes Sociaux.

[31]  G. Fechner Elemente der Psychophysik , 1998 .

[32]  F. Ratnieks,et al.  Synergy between social and private information increases foraging efficiency in ants , 2011, Biology Letters.

[33]  M. Beekman,et al.  A mathematical model of foraging in a dynamic environment by trail-laying Argentine ants. , 2012, Journal of theoretical biology.

[34]  J. Velázquez,et al.  Ant foraging and geodesic paths in labyrinths: analytical and computational results. , 2013, Journal of theoretical biology.

[35]  A.N. Zincir-Heywood,et al.  The effect of routing under local information using a social insect metaphor , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[36]  J. Deneubourg,et al.  Visual cues and trail-following idiosyncrasy inleptothorax unifasciatus: An orientation process during foraging , 1988, Insectes Sociaux.

[37]  David J. T. Sumpter,et al.  Individual Rules for Trail Pattern Formation in Argentine Ants (Linepithema humile) , 2012, PLoS Comput. Biol..

[38]  W. Hangartner Orientierung vonLasius fuliginosus Latr. an einer Gabelung der Geruchsspur , 1969, Insectes Sociaux.

[39]  J. Deneubourg,et al.  Trail-laying behaviour during exploratory recruitment in the Argentine ant: Iridomyrmex humilis (Mayr) , 1989 .

[40]  Ted J. Case,et al.  Mechanisms of dispersed central-place foraging in polydomous colonies of the Argentine ant , 2000, Animal Behaviour.

[41]  T. C. Schneirla Raiding and Other Outstanding Phenomena in the Behavior of Army Ants. , 1934, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Christoph Grüter,et al.  Negative feedback in ants: crowding results in less trail pheromone deposition , 2013, Journal of The Royal Society Interface.

[43]  Dirk Metzler,et al.  Modeling shortest path selection of the ant Linepithema humile using psychophysical theory and realistic parameter values. , 2015, Journal of theoretical biology.

[44]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[45]  Guy Theraulaz,et al.  Self-Organization in Biological Systems , 2001, Princeton studies in complexity.

[46]  N. Tsutsui,et al.  Trail Pheromone of the Argentine Ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae) , 2012, PloS one.

[47]  Ernst Heinrich Weber,et al.  De pulsu, resorptione, auditu et tactu. Annotationes anatomicae et physiologicae , 1834 .

[48]  How memory and motivation modulate the responses to trail pheromones in three ant species , 2016, Behavioral Ecology and Sociobiology.

[49]  Francis L. W. Ratnieks,et al.  Biomimicry: Further Insights from Ant Colonies? , 2008, BIOWIRE.

[50]  Heitor Silvério Lopes,et al.  Reconstruction of Phylogenetic Trees using the Ant Colony Optimization Paradigm , 2005, WOB.

[51]  Bart De Schutter,et al.  Ant Colony Optimization for traffic dispersion routing , 2010, 13th International IEEE Conference on Intelligent Transportation Systems.

[52]  Mostafa Zandieh,et al.  Parallel-machine scheduling problems with sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm , 2009, Expert Syst. Appl..

[53]  M. Lanan Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera: Formicidae). , 2014, Myrmecological news.

[54]  E. Wilson,et al.  The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies , 2008 .

[55]  J. S. Andrade,et al.  Variability in individual activity bursts improves ant foraging success , 2016, Journal of The Royal Society Interface.

[56]  P.-P. Grasse La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs , 1959, Insectes Sociaux.

[57]  Deborah M Gordon,et al.  How Patrollers Set Foraging Direction in Harvester Ants , 2007, The American Naturalist.

[58]  D. Sumpter,et al.  From nonlinearity to optimality: pheromone trail foraging by ants , 2003, Animal Behaviour.

[59]  Yan Meng,et al.  A Hybrid ACO/PSO Control Algorithm for Distributed Swarm Robots , 2007, 2007 IEEE Swarm Intelligence Symposium.

[60]  E. Wilson Chemical communication among workers of the fire ant Solenopsis saevissima (Fr. Smith) 1. The Organization of Mass-Foraging , 1962 .

[61]  A. Suarez,et al.  Worldwide spread of the Argentine ant, Linepithema humile (Hymenoptera: Formicidae) , 2009 .

[62]  Edward O. Wilson,et al.  A Chemical Releaser of Alarm and Digging Behavior in the Ant Pogonomyrmex Badius (Latreille) , 1958 .