Identification and Properties of 1,119 Candidate LincRNA Loci in the Drosophila melanogaster Genome

The functional repertoire of long intergenic noncoding RNA (lincRNA) molecules has begun to be elucidated in mammals. Determining the biological relevance and potential gene regulatory mechanisms of these enigmatic molecules would be expedited in a more tractable model organism, such as Drosophila melanogaster. To this end, we defined a set of 1,119 putative lincRNA genes in D. melanogaster using modENCODE whole transcriptome (RNA-seq) data. A large majority (1.1 of 1.3 Mb; 85%) of these bases were not previously reported by modENCODE as being transcribed. Significant selective constraint on the sequences of these loci predicts that virtually all have sustained functionality across the Drosophila clade. We observe biases in lincRNA genomic locations and expression profiles that are consistent with some of these lincRNAs being involved in the regulation of neighboring protein-coding genes with developmental functions. We identify lincRNAs that may be important in the developing nervous system and in male-specific organs, such as the testes. LincRNA loci were also identified whose positions, relative to nearby protein-coding loci, are equivalent between D. melanogaster and mouse. This study predicts that the genomes of not only vertebrates, such as mammals, but also an invertebrate (fruit fly) harbor large numbers of lincRNA loci. Our findings now permit exploitation of Drosophila genetics for the investigation of lincRNA mechanisms, including lincRNAs with potential functional analogues in mammals.

[1]  C. Ponting,et al.  Elevated rates of protein secretion, evolution, and disease among tissue-specific genes. , 2003, Genome research.

[2]  J. Krebs,et al.  Noncoding but nonexpendable: transcriptional regulation by large noncoding RNA in eukaryotes. , 2007, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[3]  C. Ponting,et al.  Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes , 2010, Genome Biology.

[4]  N. Perrimon,et al.  An endogenous small interfering RNA pathway in Drosophila , 2008, Nature.

[5]  C. Ponting,et al.  Evolution and Functions of Long Noncoding RNAs , 2009, Cell.

[6]  C. Ponting,et al.  Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. , 2007, Genome research.

[7]  C. Ponting,et al.  Genomic and Transcriptional Co-Localization of Protein-Coding and Long Non-Coding RNA Pairs in the Developing Brain , 2009, PLoS genetics.

[8]  D. Petrov,et al.  Pervasive Natural Selection in the Drosophila Genome? , 2009, PLoS genetics.

[9]  D. Petrov,et al.  Protein Evolution in the Context of Drosophila Development , 2005, Journal of Molecular Evolution.

[10]  Howard Y. Chang,et al.  Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs , 2007, Cell.

[11]  Henry H. N. Lam,et al.  PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows , 2008, EMBO reports.

[12]  M. Siomi,et al.  Molecular mechanisms that funnel RNA precursors into endogenous small-interfering RNA and microRNA biogenesis pathways in Drosophila. , 2010, RNA.

[13]  David Osumi-Sutherland,et al.  FlyBase: enhancing Drosophila Gene Ontology annotations , 2008, Nucleic Acids Res..

[14]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature Biotechnology.

[15]  W. Haerty,et al.  Ontogeny and phylogeny: molecular signatures of selection, constraint, and temporal pleiotropy in the development of Drosophila , 2009, BMC Biology.

[16]  Anke Sparmann,et al.  Polycomb silencers control cell fate, development and cancer , 2006, Nature Reviews Cancer.

[17]  J. Einasto Dark Matter , 2009, 0901.0632.

[18]  Rob J. Kulathinal,et al.  Evolution in the Fast Lane: Rapidly Evolving Sex-Related Genes in Drosophila , 2007, Genetics.

[19]  Toshiro K. Ohsumi,et al.  Genome-wide identification of polycomb-associated RNAs by RIP-seq. , 2010, Molecular cell.

[20]  Manolis Kellis,et al.  PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions , 2011, Bioinform..

[21]  Alexandre Z. Caldeira,et al.  Uncertainty in homology inferences: assessing and improving genomic sequence alignment. , 2008, Genome research.

[22]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[23]  Sin Lam Tan,et al.  Complex Loci in Human and Mouse Genomes , 2006, PLoS genetics.

[24]  F. Pauler,et al.  The Air noncoding RNA: an imprinted cis-silencing transcript. , 2004, Cold Spring Harbor symposia on quantitative biology.

[25]  Masaru Tomita,et al.  Identification and expression analysis of putative mRNA‐like non‐coding RNA in Drosophila , 2005, Genes to cells : devoted to molecular & cellular mechanisms.

[26]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[27]  Yong Zhang,et al.  CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine , 2007, Nucleic Acids Res..

[28]  C. Ponting,et al.  Transcribed dark matter: meaning or myth? , 2010, Human molecular genetics.

[29]  B. Blencowe,et al.  The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. , 2010, Molecular cell.

[30]  Erik L. L. Sonnhammer,et al.  InParanoid 6: eukaryotic ortholog clusters with inparalogs , 2007, Nucleic Acids Res..

[31]  T. Hughes,et al.  Most “Dark Matter” Transcripts Are Associated With Known Genes , 2010, PLoS biology.

[32]  Paulo P. Amaral,et al.  The Reality of Pervasive Transcription , 2011, PLoS biology.

[33]  Tilman Sanchez-Elsner,et al.  Noncoding RNAs of Trithorax Response Elements Recruit Drosophila Ash1 to Ultrabithorax , 2006, Science.

[34]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[35]  D. Spector,et al.  Long noncoding RNAs: functional surprises from the RNA world. , 2009, Genes & development.

[36]  B. Graveley The developmental transcriptome of Drosophila melanogaster , 2010, Nature.

[37]  C. Ponting,et al.  Catalogues of mammalian long noncoding RNAs: modest conservation and incompleteness , 2009, Genome Biology.

[38]  Manolis Kellis,et al.  Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. , 2007, Genome research.

[39]  J. Mattick Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[40]  Haifan Lin,et al.  An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster , 2007, Nature.

[41]  M. Kreitman,et al.  Adaptive protein evolution at the Adh locus in Drosophila , 1991, Nature.

[42]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[43]  L. Duret,et al.  Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. , 2000, Molecular biology and evolution.

[44]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[45]  C. Jolly,et al.  Human sat III and Drosophila hsr omega transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells , 2007, Nucleic acids research.

[46]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[47]  J. Rinn,et al.  lincRNAs act in the circuitry controlling pluripotency and differentiation , 2011, Nature.

[48]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[49]  Klaudia Walter,et al.  Open access, freely available online PLoS BIOLOGY Highly Conserved Non-Coding Sequences Are Associated with Vertebrate Development , 2022 .

[50]  E. Schadt,et al.  Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. , 2005, Trends in genetics : TIG.

[51]  Guillaume J. Filion,et al.  Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila Cells , 2010, Cell.

[52]  T. Derrien,et al.  Long Noncoding RNAs with Enhancer-like Function in Human Cells , 2010, Cell.

[53]  D. Hogness,et al.  Novel transcripts from the Ultrabithorax domain of the bithorax complex. , 1987, Genes & development.

[54]  Xinxian Deng,et al.  Non-coding RNA in fly dosage compensation. , 2006, Trends in biochemical sciences.

[55]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[56]  R. Kelley,et al.  Extent of Chromatin Spreading Determined by roX RNA Recruitment of MSL Proteins , 2002, Science.

[57]  Michael Q. Zhang,et al.  A long nuclear‐retained non‐coding RNA regulates synaptogenesis by modulating gene expression , 2010, EMBO Journal.

[58]  Chris P. Ponting,et al.  The functional repertoires of metazoan genomes , 2008, Nature Reviews Genetics.

[59]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature biotechnology.

[60]  Jürg Bähler,et al.  Defining transcribed regions using RNA-seq , 2010, Nature Protocols.

[61]  Brian Charlesworth,et al.  Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content , 2005, Genome Biology.

[62]  S. Sunkin,et al.  Specific expression of long noncoding RNAs in the mouse brain , 2008, Proceedings of the National Academy of Sciences.

[63]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[64]  C. Ponting,et al.  Massive turnover of functional sequence in human and other mammalian genomes. , 2010, Genome research.

[65]  M. Long,et al.  Detection of intergenic non-coding RNAs expressed in the main developmental stages in Drosophila melanogaster , 2009, Nucleic acids research.

[66]  P. Andolfatto Adaptive evolution of non-coding DNA in Drosophila , 2005, Nature.

[67]  S. Ranade,et al.  Stem cell transcriptome profiling via massive-scale mRNA sequencing , 2008, Nature Methods.

[68]  D. Spector,et al.  Eukaryotic regulatory RNAs: an answer to the 'genome complexity' conundrum. , 2007, Genes & development.

[69]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[70]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[71]  Gerald M Rubin,et al.  Identification of putative noncoding polyadenylated transcripts in Drosophila melanogaster. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[72]  A. Hüttenhofer,et al.  Non-coding RNAs: hope or hype? , 2005, Trends in genetics : TIG.

[73]  Rolf Backofen,et al.  Conserved introns reveal novel transcripts in Drosophila melanogaster. , 2009, Genome research.

[74]  D. Hartl,et al.  Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster , 2010, Proceedings of the National Academy of Sciences.

[75]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[76]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[77]  Michael F. Lin,et al.  Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals , 2009, Nature.