On the Relations between ILUs and Factored Approximate Inverses

This paper discusses some relationships between ILU factorization techniques and factored sparse approximate inverse techniques. While ILU factorizations compute approximate LU factors of the coefficient matrix A, approximate inverse techniques aim at building triangular matrices Z and W such that $W^\top AZ$ is approximately diagonal. The paper shows that certain forms of approximate inverse techniques amount to approximately inverting the triangular factors obtained from some variants of ILU factorization of the original matrix. A few useful applications of these relationships will be discussed.

[1]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[2]  Edmond Chow,et al.  Approximate Inverse Preconditioners via Sparse-Sparse Iterations , 1998, SIAM J. Sci. Comput..

[3]  M. Tismenetsky,et al.  A new preconditioning technique for solving large sparse linear systems , 1991 .

[4]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[5]  A. Yu. Yeremin,et al.  A robust AINV-type method for constructing sparse approximate inverse preconditioners in factored form , 2001 .

[6]  Arno C. N. van Duin,et al.  Scalable Parallel Preconditioning with the Sparse Approximate Inverse of Triangular Matrices , 1999, SIAM J. Matrix Anal. Appl..

[7]  Michele Benzi,et al.  Robust Approximate Inverse Preconditioning for the Conjugate Gradient Method , 2000, SIAM J. Sci. Comput..

[8]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[9]  Yousef Saad,et al.  A Factored Approximate Inverse Preconditioner with Pivoting , 2001, SIAM J. Matrix Anal. Appl..

[10]  A. A. Nikishin,et al.  Factorized sparse approximate inverse preconditionings. III. Iterative construction of preconditioners , 2000 .

[11]  N. Munksgaard,et al.  Solving Sparse Symmetric Sets of Linear Equations by Preconditioned Conjugate Gradients , 1980, TOMS.

[12]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[13]  E. D'Azevedo,et al.  Towards a cost-effective ILU preconditioner with high level fill , 1992 .

[14]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[15]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[16]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[17]  T. Manteuffel An incomplete factorization technique for positive definite linear systems , 1980 .

[18]  Arno C. N. van,et al.  Scalable Parallel Preconditioning with the Sparse Approximate Inverse of Triangular Matrices , 1999 .

[19]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..

[20]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..

[21]  Z. Zlatev Use of Iterative Refinement in the Solution of Sparse Linear Systems , 1982 .

[22]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[23]  Matthias Bollhöfer,et al.  A robust ILU with pivoting based on monitoring the growth of the inverse factors , 2001 .

[24]  Yousef Saad,et al.  ILUs and Factorized Approximate Inverses are Strongly Related. Part I: Overview of Results , 2000 .

[25]  Igor E. Kaporin,et al.  New convergence results and preconditioning strategies for the conjugate gradient method , 1994, Numer. Linear Algebra Appl..

[26]  Gene H. Golub,et al.  Matrix computations , 1983 .