Random talk: Random walk and synchronizability in a moving neighborhood network☆

Abstract We examine the synchronization problem for a group of dynamic agents that communicate via a moving neighborhood network. Each agent is modeled as a random walker in a finite lattice and is equipped with an oscillator. The communication network topology changes randomly and is dictated by the agents’ locations in the lattice. Information sharing (talking) is possible only for geographically neighboring agents. This complex system is a time-varying jump nonlinear system. We introduce the concept of ’long-time expected communication network’, defined as the ergodic limit of a stochastic time-varying network. We show that if the long-time expected network supports synchronization, then so does the stochastic network when the agents diffuse sufficiently quickly in the lattice.

[1]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[2]  P. Spreij Probability and Measure , 1996 .

[3]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[4]  T. D. Morley,et al.  Eigenvalues of the Laplacian of a graph , 1985 .

[5]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[6]  H. Jürgensen Synchronization , 2021, Inf. Comput..

[7]  Ljupco Kocarev,et al.  Synchronization in power-law networks. , 2005, Chaos.

[8]  Arkady Pikovsky,et al.  A universal concept in nonlinear sciences , 2006 .

[9]  Guanrong Chen,et al.  Chaos synchronization of general complex dynamical networks , 2004 .

[10]  R. P. Marques,et al.  Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.

[11]  Donghua Zhou,et al.  Synchronization in uncertain complex networks. , 2006, Chaos.

[12]  E. Bollt,et al.  Probability density functions of some skew tent maps , 2001 .

[13]  Changsong Zhou,et al.  Universality in the synchronization of weighted random networks. , 2006, Physical review letters.

[14]  Patrick Billingsley,et al.  Probability and Measure. , 1986 .

[15]  A. Boyarsky,et al.  Laws of Chaos : Invariant Measures and Dynamical Systems in One Dimension , 1997 .

[16]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[17]  K. Kaneko,et al.  Coupled map gas: structure formation and dynamics of interacting motile elements with internal dynamics , 2002, nlin/0204024.

[18]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[19]  M. Hasler,et al.  Blinking model and synchronization in small-world networks with a time-varying coupling , 2004 .

[20]  A. Gut Probability: A Graduate Course , 2005 .

[21]  W. Rugh Linear System Theory , 1992 .

[22]  P. Webster,et al.  Co-occurrence of Northern and Southern Hemisphere Blocks as Partially Synchronized Chaos , 1999 .

[23]  D. Vere-Jones Markov Chains , 1972, Nature.

[24]  Louis M. Pecora,et al.  Synchronization stability in Coupled oscillator Arrays: Solution for Arbitrary Configurations , 2000, Int. J. Bifurc. Chaos.

[25]  H. Kushner Introduction to stochastic control , 1971 .

[26]  E. Mosekilde,et al.  Chaotic Synchronization: Applications to Living Systems , 2002 .

[27]  Junji Ohtsubo,et al.  Feedback Induced Instability and Chaos in Semiconductor Lasers and Their Applications , 1999 .

[28]  Xinghuo Yu,et al.  Chaos control : theory and applications , 2003 .

[29]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[30]  T. Carroll,et al.  MASTER STABILITY FUNCTIONS FOR SYNCHRONIZED COUPLED SYSTEMS , 1999 .

[31]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[32]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[33]  U. Parlitz,et al.  Controlling spatio-temporal chaos in coupled oscillators by sporadic driving , 1998 .

[34]  Joseph D Skufca,et al.  Communication and synchronization in, disconnected networks with dynamic topology: moving neighborhood networks. , 2004, Mathematical biosciences and engineering : MBE.

[35]  Daihai He,et al.  Spatio-temporal synchronization of recurrent epidemics , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[36]  A. Scott Encyclopedia of nonlinear science , 2006 .

[37]  Nancy S Makay A universal concept. , 2006, Rehab management.

[38]  L. Chua,et al.  Synchronization in an array of linearly coupled dynamical systems , 1995 .

[39]  Damián H. Zanette,et al.  Minorities in a model for opinion formation , 2004, Complex..

[40]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[41]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[42]  Erik M. Bollt,et al.  Sufficient Conditions for Fast Switching Synchronization in Time-Varying Network Topologies , 2006, SIAM J. Appl. Dyn. Syst..

[43]  Thomas H. Pulliam,et al.  Stability of Linear Systems , 2001 .

[44]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2005, IEEE Transactions on Automatic Control.

[45]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.