Mg modified BaTaO2N as an efficient visible-light-active photocatalyst for water oxidation

[1]  Gang Liu,et al.  Triggering efficient photocatalytic water oxidation reactions over BaNbO 2 N by incorporating Ca at B site , 2019, Journal of the American Ceramic Society.

[2]  Hong Zhang,et al.  Switching on wide visible light photocatalytic activity over Mg4Ta2O9 by nitrogen doping for water oxidation and reduction , 2019, Journal of Catalysis.

[3]  Gang Liu,et al.  Zr doped mesoporous LaTaON2 for efficient photocatalytic water splitting , 2019, Journal of Materials Chemistry A.

[4]  Guan Zhang,et al.  Activating BaTaO2N by Ca modifications and cobalt oxide for visible light photocatalytic water oxidation reactions , 2018, Applied Catalysis B: Environmental.

[5]  Xiaoxiang Xu,et al.  Enabling efficient visible light photocatalytic water splitting over SrTaO2N by incorporating Sr in its B site , 2018 .

[6]  Wei Li,et al.  Defect engineered Ta2O5 nanorod: One-pot synthesis, visible-light driven hydrogen generation and mechanism , 2017 .

[7]  Y. Mi,et al.  Ultrathin Lanthanum Tantalate Perovskite Nanosheets Modified by Nitrogen Doping for Efficient Photocatalytic Water Splitting. , 2017, ACS nano.

[8]  F. Oehler,et al.  Preparation and dielectric properties of CaTaO2N and SrNbO2N ceramics , 2017 .

[9]  Xiaoxiang Xu,et al.  Role of Oxygen Defects on the Photocatalytic Properties of Mg-Doped Mesoporous Ta3 N5. , 2016, ChemSusChem.

[10]  F. Oehler,et al.  Photocatalytic properties of CoOx-loaded nano-crystalline perovskite oxynitrides ABO2N (A = Ca, Sr, Ba, La; B = Nb, Ta) , 2016 .

[11]  Q. Wang,et al.  Synthesis of Nanostructured BaTaO2N Thin Films as Photoanodes for Solar Water Splitting , 2016 .

[12]  A. Fuertes Metal oxynitrides as emerging materials with photocatalytic and electronic properties , 2015 .

[13]  K. Domen,et al.  NH3-Assisted Flux Growth of Cube-like BaTaO2N Submicron Crystals in a Completely Ionized Nonaqueous High-Temperature Solution and Their Water Splitting Activity , 2015 .

[14]  Z. Zou,et al.  Unraveling the mechanism of 720 nm sub-band-gap optical absorption of a Ta3N5 semiconductor photocatalyst: a hybrid-DFT calculation. , 2015, Physical chemistry chemical physics : PCCP.

[15]  Can Li,et al.  Interface engineering of a CoO(x)/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. , 2015, Angewandte Chemie.

[16]  K. Domen,et al.  A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. , 2015, Angewandte Chemie.

[17]  K. Domen,et al.  Photoelectrochemical oxidation of water using BaTaO2N photoanodes prepared by particle transfer method. , 2015, Journal of the American Chemical Society.

[18]  K. Domen,et al.  Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. , 2014, Chemical Society reviews.

[19]  Nageh K. Allam,et al.  Unravelling the correlated electronic and optical properties of BaTaO2N with perovskite-type structure as a potential candidate for solar energy conversion. , 2014, Physical chemistry chemical physics : PCCP.

[20]  Z. Zou,et al.  Role of oxygen impurity on the mechanical stability and atomic cohesion of Ta₃N₅ semiconductor photocatalyst. , 2014, Physical chemistry chemical physics : PCCP.

[21]  P. Sautet,et al.  Semiconductors Used in Photovoltaic and Photocatalytic Devices: Assessing Fundamental Properties from DFT , 2014 .

[22]  Leonard J. Brillson,et al.  Electronic Structure of Tantalum Oxynitride Perovskite Photocatalysts , 2013 .

[23]  K. Domen,et al.  Oxidation of water under visible-light irradiation over modified BaTaO2N photocatalysts promoted by tungsten species. , 2013, Angewandte Chemie.

[24]  K. Domen,et al.  Water oxidation using a particulate BaZrO3-BaTaO2N solid-solution photocatalyst that operates under a wide range of visible light. , 2012, Angewandte Chemie.

[25]  Xiaoxiang Xu,et al.  A red metallic oxide photocatalyst. , 2012, Nature materials.

[26]  V. Kaichev,et al.  Electronic structure of δ-Ta2O5 with oxygen vacancy: ab initio calculations and comparison with experiment , 2011 .

[27]  K. Domen,et al.  SrNbO2N as a water-splitting photoanode with a wide visible-light absorption band. , 2011, Journal of the American Chemical Society.

[28]  K. Domen,et al.  Synthesis and photocatalytic activity of perovskite niobium oxynitrides with wide visible-light absorption bands. , 2011, ChemSusChem.

[29]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[30]  Thomas F. Jaramillo,et al.  Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols , 2010 .

[31]  R. Dronskowski,et al.  Perovskite-related oxynitrides – Recent developments in synthesis, characterisation and investigations of physical properties , 2009 .

[32]  Andrea Listorti,et al.  Artificial photosynthesis: Solar to fuel. , 2009, Nature materials.

[33]  Benjamin H. Meekins,et al.  Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. , 2009, ACS nano.

[34]  K. Domen,et al.  Photocatalytic Overall Water Splitting under Visible Light Using ATaO2N (A = Ca, Sr, Ba) and WO3 in a IO3−/I− Shuttle Redox Mediated System , 2009 .

[35]  Tsuyoshi Takata,et al.  Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO3-/I- shuttle redox mediator , 2008 .

[36]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[37]  C. Tai,et al.  Characterization of the Structural, Optical, and Dielectric Properties of Oxynitride Perovskites AMO2N (A = Ba, Sr, Ca; M = Ta, Nb) , 2004 .

[38]  Juan Bisquert,et al.  Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  Turner,et al.  A realizable renewable energy future , 1999, Science.

[40]  Helmuth Berger,et al.  Infrared reflectivity and lattice fundamentals in anatase TiO 2 s , 1997 .

[41]  F. Ménil,et al.  The role of the inductive effect in solid state chemistry: how the chemist can use it to modify both the structural and the physical properties of the materials , 1992 .

[42]  J. Turner Energetics of the semiconductor-electrolyte interface , 1983 .

[43]  G. Somorjai,et al.  Photocatalytic hydrogen production from water on Pt-free SrTiO3 in alkali hydroxide solutions , 1980, Nature.

[44]  R. D. Shannon,et al.  Revised values of effective ionic radii , 1970 .

[45]  R. D. Shannon,et al.  Effective ionic radii in oxides and fluorides , 1969 .

[46]  W. Braun,et al.  Principles and Techniques of Diffuse‐Reflectance Spectroscopy , 1963 .

[47]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[48]  D. Nocera Living healthy on a dying planet. , 2009, Chemical Society reviews.