Inflammasome-derived IL-1β production induces nitric oxide–mediated resistance to Leishmania

[1]  C. Rangel-Escareño,et al.  Disease Severity in Patients Infected with Leishmania mexicana Relates to IL-1β , 2012, PLoS neglected tropical diseases.

[2]  Dong Liu,et al.  The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response , 2012, Front. Cell. Inf. Microbio..

[3]  Haitao Wen,et al.  A role for the NLRP3 inflammasome in metabolic diseases—did Warburg miss inflammation? , 2012, Nature Immunology.

[4]  A. Moravej,et al.  IL-1β (−511T/C) gene polymorphism not IL-1β (+3953T/C) and LT-α (+252A/G) gene variants confers susceptibility to visceral leishmaniasis , 2012, Molecular Biology Reports.

[5]  M. Olivier,et al.  Host Cell Signalling and Leishmania Mechanisms of Evasion , 2011, Journal of tropical medicine.

[6]  P. Cossart,et al.  K+ Efflux Is Required for Histone H3 Dephosphorylation by Listeria monocytogenes Listeriolysin O and Other Pore-Forming Toxins , 2011, Infection and Immunity.

[7]  Y. Iwakura,et al.  IL‐1 signalling is dispensable for protective immunity in Leishmania‐resistant mice , 2011, Experimental dermatology.

[8]  D. Zamboni,et al.  A Method for Generation of Bone Marrow-Derived Macrophages from Cryopreserved Mouse Bone Marrow Cells , 2010, PloS one.

[9]  David M. Mosser,et al.  Exploring the full spectrum of macrophage activation , 2010, Nature Reviews Immunology.

[10]  V. Dixit,et al.  Glyburide inhibits the Cryopyrin/Nalp3 inflammasome , 2009, The Journal of cell biology.

[11]  F. Martinon,et al.  The inflammasomes: guardians of the body. , 2009, Annual review of immunology.

[12]  G. Núñez,et al.  NOD-like receptors: role in innate immunity and inflammatory disease. , 2009, Annual review of pathology.

[13]  K. Rock,et al.  Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization , 2008, Nature Immunology.

[14]  Kui Li,et al.  Down-regulation of dendritic cell signaling pathways by Leishmania amazonensis amastigotes. , 2008, Molecular immunology.

[15]  J. Tschopp,et al.  Innate Immune Activation Through Nalp3 Inflammasome Sensing of Asbestos and Silica , 2008, Science.

[16]  L. Soong Modulation of Dendritic Cell Function by Leishmania Parasites1 , 2008, The Journal of Immunology.

[17]  F. Sutterwala,et al.  Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome , 2007, The Journal of experimental medicine.

[18]  R. Peeling,et al.  Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? , 2007, Nature Reviews Microbiology.

[19]  F. Martinon,et al.  Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration , 2007, Cell Death and Differentiation.

[20]  C. Sasakawa,et al.  Differential Regulation of Caspase-1 Activation, Pyroptosis, and Autophagy via Ipaf and ASC in Shigella-Infected Macrophages , 2007, PLoS pathogens.

[21]  G. Dubyak,et al.  Differential Requirement of P2X7 Receptor and Intracellular K+ for Caspase-1 Activation Induced by Intracellular and Extracellular Bacteria* , 2007, Journal of Biological Chemistry.

[22]  Mario Roederer,et al.  Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major , 2007, Nature Medicine.

[23]  Douglas E. Jones,et al.  Macrophage killing of Leishmania amazonensis amastigotes requires both nitric oxide and superoxide. , 2007, The American journal of tropical medicine and hygiene.

[24]  E. von Stebut,et al.  Distinct roles for IL-1 receptor type I signaling in early versus established Leishmania major infections. , 2006, The Journal of investigative dermatology.

[25]  J. Bertin,et al.  Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis , 2006, The Journal of experimental medicine.

[26]  V. Dixit,et al.  Cryopyrin activates the inflammasome in response to toxins and ATP , 2006, Nature.

[27]  W. Dietrich,et al.  The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection , 2006, Nature Immunology.

[28]  M. Olivier,et al.  Subversion of host cell signalling by the protozoan parasite Leishmania , 2005, Parasitology.

[29]  V. Dixit,et al.  Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf , 2004, Nature.

[30]  Seaver,et al.  Nitric oxide as a secretory product of mammalian cells , 2004 .

[31]  M. Röllinghoff,et al.  High Levels of Susceptibility and T Helper 2 Response in MyD88-Deficient Mice Infected with Leishmania major Are Interleukin-4 Dependent , 2003, Infection and Immunity.

[32]  P. De Baetselier,et al.  Genetically Resistant Mice Lacking MyD88-Adapter Protein Display a High Susceptibility to Leishmania major Infection Associated with a Polarized Th2 Response1 , 2003, The Journal of Immunology.

[33]  D. Sacks,et al.  The immunology of susceptibility and resistance to Leishmania major in mice , 2002, Nature Reviews Immunology.

[34]  G. Lalmanach,et al.  CA-074, But Not Its Methyl Ester CA-074Me, Is a Selective Inhibitor of Cathepsin B within Living Cells , 2002, Biological chemistry.

[35]  S. Beverley,et al.  A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. , 2001, Experimental parasitology.

[36]  Y. Belkaid,et al.  A Natural Model of Leishmania major Infection Reveals a Prolonged “Silent” Phase of Parasite Amplification in the Skin Before the Onset of Lesion Formation and Immunity , 2000, The Journal of Immunology.

[37]  G. Milon,et al.  Distinct Innate and Acquired Immune Responses to Leishmania in Putative Susceptible and Resistant Human Populations Endemically Exposed to L. (Viannia) panamensis Infection , 2000, Scandinavian journal of immunology.

[38]  M. Labow,et al.  Enhanced Th2‐like responses in IL‐1 type 1 receptor‐deficient mice , 1998, European journal of immunology.

[39]  R. Naviaux,et al.  The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses , 1996, Journal of virology.

[40]  M. Su,et al.  Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. , 1995, Science.

[41]  C. Bogdan,et al.  Tissue expression of inducible nitric oxide synthase is closely associated with resistance to Leishmania major , 1994, The Journal of experimental medicine.

[42]  P. Scott,et al.  Immune responses associated with susceptibility of C57BL/10 mice to Leishmania amazonensis , 1993, Infection and immunity.

[43]  S. Moncada,et al.  Resistance to Leishmania major infection correlates with the induction of nitric oxide synthase in murine macrophages , 1991, European journal of immunology.

[44]  S. Moncada,et al.  Nitric oxide: physiology, pathophysiology, and pharmacology. , 1991, Pharmacological reviews.

[45]  R. Crawford,et al.  Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha. , 1990, Journal of immunology.

[46]  E. Werner,et al.  Tetrahydrobiopterin-dependent formation of nitrite and nitrate in murine fibroblasts , 1990, The Journal of experimental medicine.

[47]  M. Meltzer,et al.  Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism. , 1990, Journal of immunology.

[48]  B. Vion,et al.  Cutaneous leishmaniasis , 1990 .

[49]  S. Ferreira,et al.  Interleukin-1β as a potent hyperalgesic agent antagonized by a tripeptide analogue , 1988, Nature.

[50]  S. Reed,et al.  Immunopathology of experimental cutaneous leishmaniasis. , 1984, The American journal of pathology.

[51]  P. Goldman,et al.  Nitrate synthesis in the germfree and conventional rat. , 1981, Science.