NAMD2: Greater Scalability for Parallel Molecular Dynamics

Abstract Molecular dynamics programs simulate the behavior of biomolecular systems, leading to understanding of their functions. However, the computational complexity of such simulations is enormous. Parallel machines provide the potential to meet this computational challenge. To harness this potential, it is necessary to develop a scalable program. It is also necessary that the program be easily modified by application–domain programmers. The NAMD2 program presented in this paper seeks to provide these desirable features. It uses spatial decomposition combined with force decomposition to enhance scalability. It uses intelligent periodic load balancing, so as to maximally utilize the available compute power. It is modularly organized, and implemented using Charm++, a parallel C++ dialect, so as to enhance its modifiability. It uses a combination of numerical techniques and algorithms to ensure that energy drifts are minimized, ensuring accuracy in long running calculations. NAMD2 uses a portable run-time framework called Converse that also supports interoperability among multiple parallel paradigms. As a result, different components of applications can be written in the most appropriate parallel paradigms. NAMD2 runs on most parallel machines including workstation clusters and has yielded speedups in excess of 180 on 220 processors. This paper also describes the performance obtained on some benchmark applications.

[1]  Vipin Kumar,et al.  Isoefficiency: measuring the scalability of parallel algorithms and architectures , 1993, IEEE Parallel & Distributed Technology: Systems & Applications.

[2]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[3]  John K. Ousterhout,et al.  Tcl and the Tk Toolkit , 1994 .

[4]  L. R. Scott,et al.  Parallelizing molecular dynamics using spatial decomposition , 1994, Proceedings of IEEE Scalable High Performance Computing Conference.

[5]  M. Smith Histone structure and function. , 1991, Current opinion in cell biology.

[6]  Laxmikant V. Kale,et al.  MDScope - a visual computing environment for structural biology , 1995 .

[7]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[8]  K. Schulten,et al.  Difficulties with multiple time stepping and fast multipole algorithm in molecular dynamics , 1997 .

[9]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[10]  John L. Gustafson,et al.  Reevaluating Amdahl's law , 1988, CACM.

[11]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[12]  Wilfred F. van Gunsteren,et al.  A Comparison of Particle-Particle, Particle-Mesh and Ewald Methods for Calculating Electrostatic Interactions in Periodic Molecular Systems , 1994 .

[13]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[14]  Steven J. Plimpton,et al.  A new parallel method for molecular dynamics simulation of macromolecular systems , 1994, J. Comput. Chem..

[15]  Andreas Windemuth,et al.  Advanced Algorithms for Molecular Dynamics Simulation: The Program PMD , 1995 .

[16]  John A. Board,et al.  A portable distributed implementation of the parallel multipole tree algorithm , 1995, Proceedings of the Fourth IEEE International Symposium on High Performance Distributed Computing.

[17]  O. Jänne,et al.  [Nuclear hormone receptors]. , 1994, Duodecim; laaketieteellinen aikakauskirja.

[18]  K. Schulten,et al.  Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. , 1998, Biophysical journal.

[19]  John A. Board,et al.  Distributed P trticle-Mesh Ewald: A Parallel Ewald Summation Method , 1996, PDPTA.

[20]  A. Jonas Reconstitution of high-density lipoproteins. , 1986, Methods in enzymology.

[21]  Helmut Grubmüller,et al.  FAMUSAMM: An algorithm for rapid evaluation of electrostatic interactions in molecular dynamics simulations. , 1997 .

[22]  Jean-Paul Renaud,et al.  Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid , 1995, Nature.

[23]  K. Esselink,et al.  Efficient Parallel Implementation of Molecular Dynamics on a Toroidal Network. Part II. Multi-particle Potentials , 1993 .

[24]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[25]  David Brown,et al.  A domain decomposition parallel processing algorithm for molecular dynamics simulations of systems of arbitrary connectivity. , 1997 .

[26]  Vaidy S. Sunderam,et al.  PVM: A Framework for Parallel Distributed Computing , 1990, Concurr. Pract. Exp..

[27]  Berend Smit,et al.  Efficient Parallel Implementation of Molecular Dynamics on a Toroidal Network. Part I. Parallelizing Strategy , 1993 .

[28]  Laxmikant V. Kalé,et al.  CHARM++: a portable concurrent object oriented system based on C++ , 1993, OOPSLA '93.

[29]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[30]  Laxmikant V. Kalé,et al.  Structured Dagger: A Coordination Language for Message-Driven Programming , 1996, Euro-Par, Vol. I.

[31]  Joel H. Saltz,et al.  Parallelizing Molecular Dynamics Programs for Distributed Memory Machines: An Application of the Cha , 1994 .

[32]  M. Karplus,et al.  SIMULATIONS OF MACROMOLECULES BY MULTIPLE TIME-STEP METHODS , 1995 .

[33]  Takao Yamazaki,et al.  A domain decomposition parallel processing algorithm for molecular dynamics simulations of polymers , 1994 .

[34]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[35]  Laxmikant V. Kalé,et al.  Converse: an interoperable framework for parallel programming , 1996, Proceedings of International Conference on Parallel Processing.

[36]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[37]  Bruce Hendrickson,et al.  A new parallel method for molecular dynamics simulation of macromolecular systems , 1996 .

[38]  Laxmikant V. Kalé,et al.  NAMD: a Parallel, Object-Oriented Molecular Dynamics Program , 1996, Int. J. High Perform. Comput. Appl..

[39]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[40]  James C. Phillips,et al.  Predicting the structure of apolipoprotein A-I in reconstituted high-density lipoprotein disks. , 1997, Biophysical journal.

[41]  D. Dewitt,et al.  Prostaglandin endoperoxide H synthases-1 and -2. , 1996, Advances in immunology.

[42]  Laxmikant V. Kalé,et al.  Multiparadigm, Multilingual Interoperability: Experience with Converse , 1998, IPPS/SPDP Workshops.

[43]  Benedict Leimkuhler,et al.  Computational Molecular Dynamics: Challenges, Methods, Ideas , 1999, Computational Molecular Dynamics.

[44]  P. Tavan,et al.  Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force , 1996, Science.

[45]  Jim Glosli,et al.  Comments on P3M, FMM, and the Ewald method for large periodic Coulombic systems , 1996 .

[46]  Takao Yamazaki,et al.  A domain decomposition parallel processing algorithm for molecular dynamics simulations of polymers [Comput. Phys. Commun. 83 (1994) 1–13] , 1995 .

[47]  Kenneth M. Merz,et al.  A highly portable parallel implementation of AMBER4 using the message passing interface standard , 1995, J. Comput. Chem..

[48]  D. J. Tildesley,et al.  Large Scale Molecular Dynamics on Parallel Computers using the Link-cell Algorithm , 1991 .

[49]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[50]  P. Loll,et al.  The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1 , 1994, Nature.

[51]  Klaus Schulten,et al.  Steered Molecular Dynamics , 1999, Computational Molecular Dynamics.

[52]  Barry Wilkinson,et al.  Parallel programming , 1998 .

[53]  L. Verlet,et al.  Computer "Experiments" on Classical Fluids. III. Time-Dependent Self-Correlation Functions , 1970 .

[54]  D. Beveridge,et al.  Free energy via molecular simulation: applications to chemical and biomolecular systems. , 1989, Annual review of biophysics and biophysical chemistry.