View-dependent precomputed light transport using nonlinear Gaussian function approximations

We propose a real-time method for rendering rigid objects with complex view-dependent effects under distant all-frequency lighting. Existing precomputed light transport approaches can render rich global illumination effects, but high-frequency view-dependent effects such as sharp highlights remain a challenge. We introduce a new representation of the light transport operator based on sums of Gaussians. The nonlinear parameters of our representation enable 1) arbitrary bandwidth because scale is encoded as a direct parameter, and 2) high-quality interpolation across view and mesh triangles because we interpolate the mean direction of the Gaussians, thereby preventing linear cross-fading artifacts. However, fitting the precomputed light transport data to this new representation requires solving a nonlinear regression problem that is more involved than traditional linear and nonlinear (truncation) approximation techniques. We present a new data fitting method based on optimization that includes energy terms aimed at enforcing artifact-free interpolation. We demonstrate that our method achieves high visual quality with a small storage cost and an efficient rendering algorithm.

[1]  Frédo Durand,et al.  Experimental analysis of BRDF models , 2005, EGSR '05.

[2]  James F. Blinn,et al.  Texture and reflection in computer generated images , 1998 .

[3]  P. Hanrahan,et al.  Triple product wavelet integrals for all-frequency relighting , 2004, SIGGRAPH 2004.

[4]  David Salesin,et al.  Environment matting and compositing , 1999, SIGGRAPH.

[5]  Jaakko Lehtinen,et al.  Matrix radiance transfer , 2003, I3D '03.

[6]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[7]  Jan Kautz,et al.  Hardware Lighting and Shading: a Survey , 2004, Comput. Graph. Forum.

[8]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[9]  Eero P. Simoncelli,et al.  Efficient Linear Re-rendering for Interactive Lighting Design , 1997 .

[10]  Abhijeet Ghosh,et al.  Simple Blurry Reflections with Environment Maps , 2002, J. Graphics, GPU, & Game Tools.

[11]  Peter Shirley,et al.  Steerable illumination textures , 2002, TOGS.

[12]  Stephen Lin,et al.  Multiresolution reflectance filtering , 2005, EGSR '05.

[13]  Jan Kautz,et al.  Fast Arbitrary BRDF Shading for Low-Frequency Lighting Using Spherical Harmonics , 2002, Rendering Techniques.

[14]  Rui Wang,et al.  Eurographics Symposium on Rendering (2004) All-frequency Relighting of Non-diffuse Objects Using Separable Brdf Approximation , 2022 .

[15]  Thomas Malzbender,et al.  Polynomial texture maps , 2001, SIGGRAPH.

[16]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[17]  Julie Dorsey,et al.  Effic ient Re-rendering of Naturally Illuminated Environments , 1994 .

[18]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[19]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[20]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[21]  Kazufumi Kaneda,et al.  A Quick Rendering Method Using Basis Functions for Interactive Lighting Design , 1995, Comput. Graph. Forum.

[22]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[23]  Pat Hanrahan,et al.  Frequency space environment map rendering , 2002, SIGGRAPH.

[24]  David Salesin,et al.  Environment matting extensions: towards higher accuracy and real-time capture , 2000, SIGGRAPH.

[25]  Donald P. Greenberg,et al.  Design and simulation of opera lighting and projection effects , 1991, SIGGRAPH.

[26]  Hans-Peter Seidel,et al.  Realistic, hardware-accelerated shading and lighting , 1999, SIGGRAPH.

[27]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[28]  N Greene,et al.  Applications of world projections , 1986 .

[29]  Pat Hanrahan,et al.  All-frequency shadows using non-linear wavelet lighting approximation , 2003, ACM Trans. Graph..

[30]  Wojciech Matusik,et al.  Acquisition and Rendering of Transparent and Refractive Objects , 2002, Rendering Techniques.

[31]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[32]  Peter-Pike J. Sloan,et al.  Clustered principal components for precomputed radiance transfer , 2003, ACM Trans. Graph..

[33]  Anselmo Lastra,et al.  Efficient rendering of spatial bi-directional reflectance distribution functions , 2002, HWWS '02.

[34]  Ned Greene,et al.  Environment Mapping and Other Applications of World Projections , 1986, IEEE Computer Graphics and Applications.

[35]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[36]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[37]  Harry Shum,et al.  Eurographics Symposium on Rendering (2004) All-frequency Precomputed Radiance Transfer for Glossy Objects , 2022 .

[38]  Peter-Pike J. Sloan,et al.  Local, deformable precomputed radiance transfer , 2005, SIGGRAPH 2005.