Zero-sum risk-sensitive stochastic games for continuous time Markov chains

ABSTRACT We study infinite horizon discounted-cost and ergodic-cost risk-sensitive zero-sum stochastic games for controlled continuous time Markov chains on a countable state space. For the discounted-cost game, we prove the existence of value and saddle-point equilibrium in the class of Markov strategies under nominal conditions. For the ergodic-cost game, we prove the existence of values and saddle point equilibrium by studying the corresponding Hamilton-Jacobi-Isaacs equation under a certain Lyapunov condition.

[1]  K. Suresh Kumar,et al.  Risk-Sensitive Ergodic Control of Continuous Time Markov Processes With Denumerable State Space , 2015 .

[2]  M. K. Ghosh,et al.  Risk-sensitive control of continuous time Markov chains , 2014, 1409.4032.

[3]  M. K. Ghosh,et al.  Zero-sum risk-sensitive stochastic games on a countable state space , 2014 .

[4]  K. Suresh Kumar,et al.  Risk-Sensitive Control of Pure Jump Process on Countable Space with Near Monotone Cost , 2013 .

[5]  Mrinal K. Ghosh,et al.  Zero-Sum Risk-Sensitive Stochastic Differential Games , 2012, Math. Oper. Res..

[6]  W. Fleming,et al.  On the value of stochastic differential games , 2011 .

[7]  P. Schrimpf,et al.  Dynamic Programming , 2011 .

[8]  Xianping Guo,et al.  Continuous-Time Markov Decision Processes: Theory and Applications , 2009 .

[9]  O. Hernández-Lerma,et al.  Zero-sum games for continuous-time jump Markov processes in Polish spaces: discounted payoffs , 2007, Advances in Applied Probability.

[10]  Lukasz Stettner,et al.  Infinite Horizon Risk Sensitive Control of Discrete Time Markov Processes under Minorization Property , 2007, SIAM J. Control. Optim..

[11]  Xianping Guo,et al.  Nonzero-sum games for continuous-time Markov chains with unbounded discounted payoffs , 2005, Journal of Applied Probability.

[12]  Xianping Guo,et al.  Nonzero-sum games for continuous-time Markov chains with unbounded transition and average payoff rates , 2003 .

[13]  Ł. Stettner,et al.  Infinite horizon risk sensitive control of discrete time Markov processes with small risk , 2000 .

[14]  Lukasz Stettner,et al.  Risk-Sensitive Control of Discrete-Time Markov Processes with Infinite Horizon , 1999, SIAM J. Control. Optim..

[15]  Rolando Cavazos-Cadena,et al.  Controlled Markov chains with risk-sensitive criteria: Average cost, optimality equations, and optimal solutions , 1999, Math. Methods Oper. Res..

[16]  T. Başar Nash Equilibria of Risk-Sensitive Nonlinear Stochastic Differential Games , 1999 .

[17]  W. Fleming,et al.  Risk sensitive control of finite state machines on an infinite horizon. I , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[18]  Daniel Hernández-Hernández,et al.  Risk Sensitive Markov Decision Processes , 1997 .

[19]  S. Marcus,et al.  Risk sensitive control of Markov processes in countable state space , 1996 .

[20]  M. K. Ghosh,et al.  Stochastic differential games: Occupation measure based approach , 1996 .

[21]  W. Fleming,et al.  Risk-Sensitive Control on an Infinite Time Horizon , 1995 .

[22]  M. Klompstra Nash equilibria in risk-sensitive dynamic games , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[23]  S.,et al.  Risk-Sensitive Control and Dynamic Games for Partially Observed Discrete-Time Nonlinear Systems , 1994 .

[24]  Uriel G. Rothblum,et al.  Multiplicative Markov Decision Chains , 1984, Math. Oper. Res..

[25]  C. J. Himmelberg,et al.  Existence of p-equilibrium and optimal stationary strategies in stochastic games , 1976 .

[26]  Rhodes,et al.  Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games , 1973 .

[27]  V. Benes Existence of Optimal Strategies Based on Specified Information, for a Class of Stochastic Decision Problems , 1970 .

[28]  J. Warga,et al.  Functions of Relaxed Controls , 1967 .

[29]  K. Fan Fixed-point and Minimax Theorems in Locally Convex Topological Linear Spaces. , 1952, Proceedings of the National Academy of Sciences of the United States of America.