Consistent bootstrap tests of parametric regression functions

Abstract This paper introduces specification tests of parametric mean-regression models. The null hypothesis of interest is that the parametric regression function is correctly specified. The proposed tests are generalizations of the Kolmogorov–Smirnov and Cramer–von Mises tests to the regression framework. They are consistent against all alternatives to the null hypothesis, powerful against 1/ n local alternatives, not dependent on any smoothing parameters and simple to compute. A wild-bootstrap procedure is suggested to obtain critical values for the tests and is justified asymptotically. A small-scale Monte Carlo experiment shows that our tests (especially Cramer–von Mises test) have outstanding small sample performance compared to some of the existing tests.

[1]  M. Lifshits On the Absolute Continuity of Distributions of Functionals of Random Processes , 1983 .

[2]  Yanqin Fan,et al.  Consistent model specification tests : Omitted variables and semiparametric functional forms , 1996 .

[3]  Clifford H. Spiegelman,et al.  Testing the Goodness of Fit of a Linear Model via Nonparametric Regression Techniques , 1990 .

[4]  Changbao Wu,et al.  Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .

[5]  H. Bierens Consistent Model Speci fi cation Tests ∗ , 1982 .

[6]  Joel L. Horowitz,et al.  An Adaptive, Rate-Optimal Test of a Parametric Model Against a Nonparametric Alternative , 1999 .

[7]  H. Bierens Consistent model specification tests , 1982 .

[8]  Herman J. Bierens,et al.  A consistent conditional moment test of functional form , 1990 .

[9]  D. Pollard Empirical Processes: Theory and Applications , 1990 .

[10]  D. Pollard Convergence of stochastic processes , 1984 .

[11]  Suojin Wang,et al.  A simple consistent bootstrap test for a parametric regression function , 1998 .

[12]  Adonis Yatchew,et al.  Nonparametric Regression Tests Based on Least Squares , 1992, Econometric Theory.

[13]  Robert M. de Jong,et al.  THE BIERENS TEST UNDER DATA DEPENDENCE , 1996 .

[14]  P. Gozalo,et al.  A Consistent Model Specification Test for Nonparametric Estimation of Regression Function Models , 1993, Econometric Theory.

[15]  Donald W. K. Andrews,et al.  A Conditional Kolmogorov Test , 1997 .

[16]  Maxwell B. Stinchcombe,et al.  CONSISTENT SPECIFICATION TESTING WITH NUISANCE PARAMETERS PRESENT ONLY UNDER THE ALTERNATIVE , 1998, Econometric Theory.

[17]  Winfried Stute,et al.  Bootstrap Approximations in Model Checks for Regression , 1998 .

[18]  Lixing Zhu,et al.  Model checks for regression: an innovation process approach , 1998 .

[19]  Herman J. Bierens,et al.  Asymptotic Theory of Integrated Conditional Moment Tests , 1997 .

[20]  Qi Li,et al.  CONSISTENT MODEL SPECIFICATION TESTS , 2000, Econometric Theory.

[21]  Jeffrey M. Wooldridge,et al.  A Test for Functional Form Against Nonparametric Alternatives , 1992, Econometric Theory.

[22]  Testing for the Martingale Hypothesis , 1999 .

[23]  Yoon-Jae Whang,et al.  Tests of specification for parametric and semiparametric models , 1993 .

[24]  Yongmiao Hong,et al.  Consistent Specification Testing via Nonparametric Series Regression , 1995 .

[25]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .