Alpha-Cut Implemented Fuzzy Clustering Algorithms and Switching Regressions

In the fuzzy c-means (FCM) clustering algorithm, almost none of the data points have a membership value of 1. Moreover, noise and outliers may cause difficulties in obtaining appropriate clustering results from the FCM algorithm. The embedding of FCM into switching regressions, called the fuzzy c-regressions (FCRs), still has the same drawbacks as FCM. In this paper, we propose the -cut implemented fuzzy clustering algorithms, referred to as , which allow the data points being able to completely belong to one cluster. The proposed algorithms can form a cluster core for each cluster, where data points inside a cluster core will have a membership value of 1 so that it can resolve the drawbacks of FCM. On the other hand, the fuzziness index plays different roles for FCM and . We find that the clustering results obtained by are more robust to noise and outliers than FCM when a larger is used. Moreover, the cluster cores generated by are workable for various data shape clusters, so that is very suitable for embedding into switching regressions. The embedding of into switching regressions is called . The proposed provides better results than FCR for environments with noise or outliers. Numerical examples show the robustness and the superiority of our proposed methods.

[1]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Hidetomo Ichihashi,et al.  Linear fuzzy clustering techniques with missing values and their application to local principal component analysis , 2004, IEEE Transactions on Fuzzy Systems.

[3]  Boudewijn P. F. Lelieveldt,et al.  A new cluster validity index for the fuzzy c-mean , 1998, Pattern Recognit. Lett..

[4]  Miin-Shen Yang,et al.  Alternative c-means clustering algorithms , 2002, Pattern Recognit..

[5]  J. A. Cuesta-Albertos,et al.  Trimmed $k$-means: an attempt to robustify quantizers , 1997 .

[6]  J. Deutsch,et al.  An application of a switching regimes regression to the study of urban structure , 2002 .

[7]  Yu Jian On the Fuzziness Index of the FCM Algorithms , 2003 .

[8]  J. Bezdek,et al.  DETECTION AND CHARACTERIZATION OF CLUSTER SUBSTRUCTURE I. LINEAR STRUCTURE: FUZZY c-LINES* , 1981 .

[9]  Palma Blonda,et al.  A survey of fuzzy clustering algorithms for pattern recognition. II , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[10]  Mohamed-Jalal Fadili,et al.  On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series , 2001, Medical Image Anal..

[11]  R. Quandt Tests of the Hypothesis That a Linear Regression System Obeys Two Separate Regimes , 1960 .

[12]  Jacek M. Leski Epsiv-insensitive Fuzzy C-regression Models: Introduction to Epsiv-insensitive Fuzzy Modeling , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[13]  Francisco F. Rivera,et al.  Cluster validity based on the hard tendency of the fuzzy classification , 1990, Pattern Recognit. Lett..

[14]  Noureddine Zahid,et al.  A new cluster-validity for fuzzy clustering , 1999, Pattern Recognit..

[15]  James C. Bezdek,et al.  Generalized fuzzy c-means clustering strategies using Lp norm distances , 2000, IEEE Trans. Fuzzy Syst..

[16]  J. B. Ramsey,et al.  Estimating Mixtures of Normal Distributions and Switching Regressions , 1978 .

[17]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  A. Gordaliza,et al.  Robustness Properties of k Means and Trimmed k Means , 1999 .

[19]  V. J. Rayward-Smith,et al.  Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition , 1999 .

[20]  Miin-Shen Yang On a class of fuzzy classification maximum likelihood procedures , 1993 .

[21]  Y. Fukuyama,et al.  A new method of choosing the number of clusters for the fuzzy c-mean method , 1989 .

[22]  J. Bezdek Numerical taxonomy with fuzzy sets , 1974 .

[23]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.

[24]  Rajesh N. Davé,et al.  Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..

[25]  R.J. Hathaway,et al.  Switching regression models and fuzzy clustering , 1993, IEEE Trans. Fuzzy Syst..

[26]  Doheon Lee,et al.  On cluster validity index for estimation of the optimal number of fuzzy clusters , 2004, Pattern Recognit..

[27]  M Jacek -Insensitive Fuzzy -Regression Models: Introduction to -Insensitive Fuzzy Modeling , 2004 .

[28]  Witold Pedrycz,et al.  Conditional Fuzzy C-Means , 1996, Pattern Recognit. Lett..

[29]  Jian Yu,et al.  Analysis of the weighting exponent in the FCM , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[30]  N. Karayiannis MECA: maximum entropy clustering algorithm , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[31]  G. Tsekouras,et al.  A new approach for measuring the validity of the fuzzy c -means algorithm , 2004 .

[32]  Miin-Shen Yang A survey of fuzzy clustering , 1993 .

[33]  Hongjun Lu,et al.  A New Integrated Clustering Algorithm GFC and Switching Regressions , 2002, Int. J. Pattern Recognit. Artif. Intell..

[34]  Georg Peters A linear forecasting model and its application to economic data , 2001 .

[35]  Lung-fei Lee,et al.  Simulation estimation of dynamic switching regression and dynamic disequilibrium models -- some Monte Carlo results , 1997 .

[36]  Jian Yu,et al.  Optimality test for generalized FCM and its application to parameter selection , 2005, IEEE Transactions on Fuzzy Systems.

[37]  G. Chow Tests of equality between sets of coefficients in two linear regressions (econometrics voi 28 , 1960 .

[38]  Jian Yu,et al.  A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests , 2005, Pattern Recognit. Lett..

[39]  Palma Blonda,et al.  A survey of fuzzy clustering algorithms for pattern recognition. I , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[40]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[41]  R. D. Veaux,et al.  Mixtures of linear regressions , 1989 .

[42]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[43]  Kuo-Lung Wu,et al.  Unsupervised possibilistic clustering , 2006, Pattern Recognit..

[44]  Gert Cauwenberghs,et al.  Incremental and Decremental Support Vector Machine Learning , 2000, NIPS.

[45]  E. Trauwaert On the meaning of Dunn's partition coefficient for fuzzy clusters , 1988 .

[46]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[47]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[48]  R. Quandt A New Approach to Estimating Switching Regressions , 1972 .

[49]  Anil K. Jain,et al.  A Clustering Performance Measure Based on Fuzzy Set Decomposition , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Ujjwal Maulik,et al.  Validity index for crisp and fuzzy clusters , 2004, Pattern Recognit..

[51]  Lale Akarun,et al.  A fuzzy algorithm for color quantization of images , 2002, Pattern Recognit..

[52]  Simeon K. Ehui,et al.  Credit constraints and smallholder dairy production in the East African highlands: application of a switching regression model , 1998 .

[53]  Miin-Shen Yang,et al.  A cluster validity index for fuzzy clustering , 2005, Pattern Recognit. Lett..

[54]  Donald Gustafson,et al.  Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[55]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[56]  Hichem Frigui,et al.  Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. II , 1995, IEEE Trans. Fuzzy Syst..

[57]  Miin-Shen Yang,et al.  A similarity-based robust clustering method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[59]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[60]  R. Quandt The Estimation of the Parameters of a Linear Regression System Obeying Two Separate Regimes , 1958 .