Pointwise a posteriori error estimates for monotone semi-linear equations

We derive upper and lower a posteriori estimates for the maximum norm error in finite element solutions of monotone semi-linear equations. The estimates hold for Lagrange elements of any fixed order, non-smooth nonlinearities, and take numerical integration into account. The proof hinges on constructing continuous barrier functions by correcting the discrete solution appropriately, and then applying the continuous maximum principle; no geometric mesh constraints are thus required. Numerical experiments illustrate reliability and efficiency properties of the corresponding estimators and investigate the performance of the resulting adaptive algorithms in terms of the polynomial order and quadrature.

[1]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[2]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[3]  Ricardo H. Nochetto,et al.  Fully Localized A posteriori Error Estimators and Barrier Sets for Contact Problems , 2004, SIAM J. Numer. Anal..

[4]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[5]  H. Alt,et al.  A free boundary problem for semilinear elliptic equations. , 1986 .

[6]  Philippe G. Ciarlet,et al.  The Finite Element Method for Elliptic Problems. , 1981 .

[7]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[8]  Haim Brezis,et al.  Semi-linear second-order elliptic equations in L 1 , 1973 .

[9]  G. Fix Review: Philippe G. Ciarlet, The finite element method for elliptic problems , 1979 .

[10]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[11]  Ricardo G. Durán,et al.  Maximum Norm Error Estimators for Three-Dimensional Elliptic Problems , 1999, SIAM J. Numer. Anal..

[12]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[13]  Kunibert G. Siebert,et al.  ALBERT---Software for scientific computations and applications. , 2001 .

[14]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[15]  Douglas N. Arnold,et al.  Adaptive Finite Elements and Colliding Black Holes , 1997 .

[16]  Ricardo H. Nochetto,et al.  Pointwise a posteriori error control for elliptic obstacle problems , 2003, Numerische Mathematik.

[17]  Ricardo H. Nochetto,et al.  SharpL∞-error estimates for semilinear elliptic problems with free boundaries , 1989 .

[18]  Daniel Phillips,et al.  Hausdoff measure estimates of a free boundary for a minimum problem , 1983 .

[19]  A. Callegari,et al.  A Nonlinear Singular Boundary Value Problem in the Theory of Pseudoplastic Fluids , 1980 .

[20]  Aihua W. Shaker,et al.  Theory and Numerics for a Semilinear Elliptic PDE, with an Application in the Theory of Pseudoplastic Fluids , 1996 .

[21]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[22]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[23]  Ricardo H. Nochetto,et al.  Pointwise a posteriori error estimates for elliptic problems on highly graded meshes , 1995 .

[24]  Alan C. Lazer,et al.  On a singular nonlinear elliptic boundary-value problem , 1991 .

[25]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[26]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[27]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[28]  W. Richardson,et al.  Sobolev preconditioning for the Poisson–Boltzmann equation , 2000 .