Convex Computation of the Maximum Controlled Invariant Set For Polynomial Control Systems

We characterize the maximum controlled invariant (MCI) set for discrete- as well as continuous-time nonlinear dynamical systems as the solution of an infinite-dimensional linear programming problem. For systems with polynomial dynamics and compact semialgebraic state and control constraints, we describe a hierarchy of finite-dimensional linear matrix inequality (LMI) relaxations whose optimal values converge to the volume of the MCI set; dual to these LMI relaxations are sum-of-squares (SOS) problems providing a converging sequence of outer approximations to the MCI set. The approach is simple and readily applicable in the sense that the approximations are the outcome of a single semidefinite program with no additional input apart from the problem description. A number of numerical examples illustrate the approach.

[1]  Bart De Moor,et al.  On efficient computation of low-complexity controlled invariant sets for uncertain linear systems , 2010, Int. J. Control.

[2]  Ufuk Topcu,et al.  Robust Region-of-Attraction Estimation , 2010, IEEE Transactions on Automatic Control.

[3]  Masakazu Kojima,et al.  SDPARA: SemiDefinite Programming Algorithm paRAllel version , 2003, Parallel Comput..

[4]  Alexander P. Krishchenko,et al.  Maximal compact positively invariant sets of discrete-time nonlinear systems , 2011 .

[5]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[6]  V. Borkar,et al.  Occupation measures for controlled Markov processes: characterization and optimality , 1996 .

[7]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[8]  Sasa V. Rakovic,et al.  Parameterized Robust Control Invariant Sets for Linear Systems: Theoretical Advances and Computational Remarks , 2010, IEEE Transactions on Automatic Control.

[9]  Colin Neil Jones,et al.  Inner Approximations of the Region of Attraction for Polynomial Dynamical Systems , 2012, NOLCOS.

[10]  O. Hernández-Lerma,et al.  Discrete-time Markov control processes , 1999 .

[11]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[12]  M. Hestenes Calculus of variations and optimal control theory , 1966 .

[13]  Alexander B. Kurzhanski,et al.  Parallel algorithm for calculating the invariant sets of high-dimensional linear systems under uncertainty , 2013, Computational Mathematics and Mathematical Physics.

[14]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[15]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[16]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[17]  J. Rubio Control and Optimization: The Linear Treatment of Nonlinear Problems , 1986 .

[18]  Konstantin E. Starkov,et al.  Bounds for compact invariant sets of the system describing dynamics of the nuclear spin generator , 2009 .

[19]  Vladimir Gaitsgory,et al.  Linear Programming Approach to Deterministic Infinite Horizon Optimal Control Problems with Discounting , 2009, SIAM J. Control. Optim..

[20]  A. Rantzer A dual to Lyapunov's stability theorem , 2001 .

[21]  E. Anderson,et al.  Linear programming in infinite-dimensional spaces : theory and applications , 1987 .

[22]  Jun-ichi Imura,et al.  Controlled invariant feasibility - A general approach to enforcing strong feasibility in MPC applied to move-blocking , 2009, Autom..

[23]  G. Chesi Domain of Attraction: Analysis and Control via SOS Programming , 2011 .

[24]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[25]  Meiqin Liu,et al.  H∞ State Estimation for Discrete-Time Chaotic Systems Based on a Unified Model. , 2012, IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society.

[26]  Ian M. Mitchell,et al.  Overapproximating Reachable Sets by Hamilton-Jacobi Projections , 2003, J. Sci. Comput..

[27]  P. Berck,et al.  Calculus of variations and optimal control theory , 1993 .

[28]  D. Bertsekas Infinite time reachability of state-space regions by using feedback control , 1972 .

[29]  Amir Ali Ahmadi Non-monotonic Lyapunov functions for stability of nonlinear and switched systems : theory and computation , 2008 .

[30]  Thomas G. Kurtz,et al.  Equivalence of Stochastic Equations and Martingale Problems , 2011 .

[31]  J. Hennet,et al.  (A, B)-Invariant Polyhedral Sets of Linear Discrete-Time Systems , 1999 .

[32]  Didier Henrion,et al.  Convex Computation of the Region of Attraction of Polynomial Control Systems , 2012, IEEE Transactions on Automatic Control.

[33]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[34]  E. Kerrigan Robust Constraint Satisfaction: Invariant Sets and Predictive Control , 2000 .

[35]  Amir Ali Ahmadi,et al.  Control design along trajectories with sums of squares programming , 2012, 2013 IEEE International Conference on Robotics and Automation.

[36]  Makoto Yamashita,et al.  Latest Developments in the SDPA Family for Solving Large-Scale SDPs , 2012 .

[37]  W. Fleming Book Review: Discrete-time Markov control processes: Basic optimality criteria , 1997 .

[38]  Kim-Chuan Toh,et al.  A Newton-CG Augmented Lagrangian Method for Semidefinite Programming , 2010, SIAM J. Optim..

[39]  M. Cwikel,et al.  Convergence of an algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states , 1985, 1985 24th IEEE Conference on Decision and Control.

[40]  Antoine Girard,et al.  Controller synthesis for robust invariance of polynomial dynamical systems using linear programming , 2012, Syst. Control. Lett..

[41]  Alexander P. Krishchenko,et al.  Localization of Compact Invariant Sets of Discrete-Time nonlinear Systems , 2011, Int. J. Bifurc. Chaos.

[42]  Konstantin E. Starkov Estimation of the Domain Containing All Compact Invariant Sets of the Optically Injected Laser System , 2007, Int. J. Bifurc. Chaos.

[43]  F. Blanchini Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions , 1994, IEEE Trans. Autom. Control..

[44]  Baskar Ganapathysubramanian,et al.  Stability in the almost everywhere sense: A linear transfer operator approach , 2010 .

[45]  Renato D. C. Monteiro,et al.  Implementation of a block-decomposition algorithm for solving large-scale conic semidefinite programming problems , 2014, Comput. Optim. Appl..

[46]  B. Craven Control and optimization , 2019, Mathematical Modelling of the Human Cardiovascular System.

[47]  John Lygeros,et al.  Controlled Invariance of Discrete Time Systems , 2000, HSCC.

[48]  Didier Henrion,et al.  Approximate Volume and Integration for Basic Semialgebraic Sets , 2009, SIAM Rev..

[49]  L. Ambrosio Transport Equation and Cauchy Problem for Non-Smooth Vector Fields , 2008 .

[50]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[51]  Kai Wang,et al.  Transfer operator approach for computing domain of attraction , 2010, 49th IEEE Conference on Decision and Control (CDC).

[52]  Li Wang,et al.  Regularization Methods for SDP Relaxations in Large-Scale Polynomial Optimization , 2009, SIAM J. Optim..

[53]  Franco Blanchini,et al.  Dynamic augmentation and complexity reduction of set-based constrained control , 2008 .

[54]  John Lygeros,et al.  Hamilton–Jacobi Formulation for Reach–Avoid Differential Games , 2009, IEEE Transactions on Automatic Control.