Higher order asymptotic analysis of the Klein-Gordon equation in the non-relativistic limit regime

In this paper, we study the asymptotic behavior of nonlinear Klein-Gordon equations in the non-relativistic limit regime. By employing the techniques in geometric optics, we show that the Klein-Gordon equation can be approximated by nonlinear Schrödinger equations. In particular, we show error estimates which are of the same order as the initial error. Our result gives a mathematical verification for some numerical results obtained in [1, 2], and offers a rigorous justification for a technical assumption in the numerical studies [1].

[1]  D. Lannes,et al.  Justification of and long-wave correction to Davey-Stewartson systems from quadratic hyperbolic systems , 2004 .

[2]  Partially Strong Transparency Conditions and a Singular Localization Method In Geometric Optics , 2014, 1412.7787.

[3]  Higher-order resonances and instability of high-frequency WKB solutions , 2013, 1312.3243.

[4]  M. Tsutsumi Nonrelativistic approximation of nonlinear Klein-Gordon equations in two space dimensions , 1984 .

[5]  Guy Metivier,et al.  Para-Differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems , 2008 .

[6]  David Lannes,et al.  Dispersive effects for nonlinear geometrical optics with rectification , 1998 .

[7]  J. Ginibre,et al.  The global Cauchy problem for the non linear Klein-Gordon equation-II , 1986 .

[8]  Lu Yong High-frequency limit of the Maxwell-Landau-Lifshitz system in the diffractive optics regime , 2013, Asymptot. Anal..

[9]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[10]  Weizhu Bao,et al.  A Uniformly Accurate Multiscale Time Integrator Pseudospectral Method for the Klein-Gordon Equation in the Nonrelativistic Limit Regime , 2014, SIAM J. Numer. Anal..

[11]  町原 秀二,et al.  The Nonrelativistic Limit of the Nonlinear Klein-Gordon Equation (調和解析学と非線形偏微分方程式) , 2000 .

[12]  Xiaowei Jia,et al.  A Uniformly Accurate Multiscale Time Integrator Pseudospectral Method for the Dirac Equation in the Nonrelativistic Limit Regime , 2015, SIAM J. Numer. Anal..

[13]  W. Strauss,et al.  Decay and scattering of solutions of a nonlinear relativistic wave equation , 1972 .

[14]  Guy Métivier,et al.  Transparent Nonlinear Geometric Optics and Maxwell–Bloch Equations , 2000 .

[15]  Benjamin Texier,et al.  Derivation of the Zakharov Equations , 2006, math/0603092.

[16]  B. Texier,et al.  A stability criterion for high-frequency oscillations , 2013, 1307.4196.

[17]  J. Ginibre,et al.  The global Cauchy problem for the non linear Klein-Gordon equation , 1985 .

[18]  Kenji Nakanishi,et al.  Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations , 2002 .

[19]  Weizhu Bao,et al.  Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime , 2011, Numerische Mathematik.

[20]  Jalil Rashidinia,et al.  Numerical solution of the nonlinear Klein-Gordon equation , 2010, J. Comput. Appl. Math..

[21]  Kenji Nakanishi,et al.  From nonlinear Klein-Gordon equation to a system of coupled nonlinear Schrödinger equations , 2002 .