Three-Dimensional Numerical Analysis of Tunnel Seepage Based on the Iteration Method

The groundwater can cause a significant threat to the safety of the tunnels excavated in water-rich areas. To investigate the impact of seepage to tunnels, the most important issues are calculations of the saturated surface and seepage flow. According to the great similarity between temperature field and seepage field in the theoretical foundation, differential equations and boundary conditions, the thermal analysis function of ANSYS could be used to calculate the non-pressure stable seepage based on the iteration method. The saturated surface and seepage flow through the lining are obtained by take a tunnel as an example, under using iteration method programming in ANSYS software. Additionally, on the basis of the correlation analysis, with the reduction of ground water level, the seepage discharge through the lining decreased sharply at the beginning, and then, the reduction trend gets inconspicuous. It has no obvious effect to decrease the water discharge by reducing the ground water level under this condition. Therefore, taking economic benefits into account, it is unadvisable to lower water level blindly. The optimal analysis of the actual conditions should be carried out in engineering practice. It has a certain reference value to the design and construction of tunnels in water-rich areas.