Comparative targeting analysis of KLF1, BCL11A, and HBG1/2 in CD34+ HSPCs by CRISPR/Cas9 for the induction of fetal hemoglobin

[1]  S. Mirarab,et al.  Sequence Analysis , 2020, Encyclopedia of Bioinformatics and Computational Biology.

[2]  A. Miccio,et al.  Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies. , 2019, Blood.

[3]  A. Scharenberg,et al.  Therapeutically relevant engraftment of a CRISPR-Cas9–edited HSC-enriched population with HbF reactivation in nonhuman primates , 2019, Science Translational Medicine.

[4]  Chunyan Ren,et al.  Highly efficient therapeutic gene editing of human hematopoietic stem cells , 2019, Nature Medicine.

[5]  A. Munshi,et al.  Pharmacological and molecular approaches for the treatment of β‐hemoglobin disorders , 2018, Journal of cellular physiology.

[6]  D. Boffelli,et al.  CRISPR-Cas9 interrogation of a putative fetal globin repressor in human erythroid cells , 2018, bioRxiv.

[7]  A. K. M. Ashiqul Haque,et al.  CRISPR/Cas9 system: A promising technology for the treatment of inherited and neoplastic hematological diseases , 2018 .

[8]  M. Porteus,et al.  Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. , 2018, Blood.

[9]  Martha L. Bulyk,et al.  Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch , 2018, Cell.

[10]  Xiuli Wu,et al.  The expression pattern of Bcl11a, Mdm2 and Pten genes in B‐cell acute lymphoblastic leukemia , 2018, Asia-Pacific journal of clinical oncology.

[11]  Laura J. Norton,et al.  Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding , 2018, Nature Genetics.

[12]  R. Gambari,et al.  BCL11A mRNA Targeting by miR-210: A Possible Network Regulating γ-Globin Gene Expression , 2017, International journal of molecular sciences.

[13]  Maite Huarte,et al.  The multidimensional mechanisms of long noncoding RNA function , 2017, Genome Biology.

[14]  K. Quinlan,et al.  KLF1 drives the expression of fetal hemoglobin in British HPFH. , 2017, Blood.

[15]  C. Plass,et al.  Epigenetic dysregulation of the erythropoietic transcription factor KLF1 and the β-like globin locus in juvenile myelomonocytic leukemia , 2017, Epigenetics.

[16]  A. Nienhuis,et al.  Lentiviral Transfer of γ-Globin with Fusion Gene NUP98-HOXA10HD Expands Hematopoietic Stem Cells and Ameliorates Murine β-Thalassemia. , 2017, Molecular therapy : the journal of the American Society of Gene Therapy.

[17]  X. Yang,et al.  Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34+ Hematopoietic Stem and Progenitor Cells , 2017, Molecular therapy. Methods & clinical development.

[18]  J. D. Macklis,et al.  Strict in vivo specificity of the Bcl11a erythroid enhancer. , 2016, Blood.

[19]  Sruthi Mantri,et al.  CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells , 2016, Nature.

[20]  Matthew C. Canver,et al.  Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype. , 2016, The Journal of clinical investigation.

[21]  M. Modarressi,et al.  Genetic disruption of the KLF1 gene to overexpress the γ‐globin gene using the CRISPR/Cas9 system , 2016, The journal of gene medicine.

[22]  Y. Kan,et al.  Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia , 2016, Proceedings of the National Academy of Sciences.

[23]  R. Hardison,et al.  A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition , 2016, Nature Medicine.

[24]  Matthew C. Canver,et al.  Customizing the genome as therapy for the β-hemoglobinopathies. , 2016, Blood.

[25]  Martin J. Aryee,et al.  Open-source guideseq software for analysis of GUIDE-seq data , 2016, Nature Biotechnology.

[26]  John Hale,et al.  Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors. , 2016, Blood.

[27]  S. Borwornpinyo,et al.  Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the βA(T87Q)-Globin Gene , 2016, Human gene therapy.

[28]  Matthew C. Canver,et al.  Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin , 2016, Science.

[29]  Matthew C. Canver,et al.  BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis , 2015, Nature.

[30]  J. Stamatoyannopoulos,et al.  2p15-p16.1 microdeletions encompassing and proximal to BCL11A are associated with elevated HbF in addition to neurologic impairment. , 2015, Blood.

[31]  Jacob C. Ulirsch,et al.  BCL11A deletions result in fetal hemoglobin persistence and neurodevelopmental alterations. , 2015, The Journal of clinical investigation.

[32]  S. Rivella,et al.  Recent trends in the gene therapy of β-thalassemia , 2015, Journal of blood medicine.

[33]  Martin J. Aryee,et al.  GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases , 2014, Nature Biotechnology.

[34]  J. Old,et al.  IthaGenes: An Interactive Database for Haemoglobin Variations and Epidemiology , 2014, PloS one.

[35]  Ansuman T. Satpathy,et al.  Bcl11a Controls Flt3 Expression in Early Hematopoietic Progenitors and Is Required for pDC Development In Vivo , 2013, PloS one.

[36]  Swee Lay Thein,et al.  The molecular basis of β-thalassemia. , 2013, Cold Spring Harbor perspectives in medicine.

[37]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[38]  Daniel E Bauer,et al.  Reawakening fetal hemoglobin: prospects for new therapies for the β-globin disorders. , 2012, Blood.

[39]  P. Nurden,et al.  Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. , 2011, Blood.

[40]  M. Siatecka,et al.  The multifunctional role of EKLF/KLF1 during erythropoiesis. , 2011, Blood.

[41]  Paola Sebastiani,et al.  Fetal hemoglobin in sickle cell anemia. , 2011, Blood.

[42]  F. Bushman,et al.  Distribution of lentiviral vector integration sites in mice following therapeutic gene transfer to treat β-thalassemia. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[43]  S. Philipsen,et al.  Erythroid phenotypes associated with KLF1 mutations , 2011, Haematologica.

[44]  A. Nienhuis,et al.  Transcriptional regulation of fetal to adult hemoglobin switching: new therapeutic opportunities. , 2011, Blood.

[45]  S. Orkin,et al.  Therapeutic levels of fetal hemoglobin in erythroid progeny of β-thalassemic CD34+ cells after lentiviral vector-mediated gene transfer. , 2011, Blood.

[46]  A. D. de Brevern,et al.  A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia. , 2010, American journal of human genetics.

[47]  Jérôme Larghero,et al.  Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia , 2010, Nature.

[48]  T. Townes,et al.  KLF1 regulates BCL11A expression and γ- to β-globin gene switching , 2010, Nature Genetics.

[49]  S. Orkin,et al.  Advances in the understanding of haemoglobin switching , 2010, British journal of haematology.

[50]  R. L. Johnson,et al.  In vivo functions of the patched protein: requirement of the C terminus for target gene inactivation but not Hedgehog sequestration. , 2000, Molecular cell.

[51]  D J Weatherall,et al.  The therapeutic reactivation of fetal haemoglobin. , 1998, Human molecular genetics.

[52]  JN Weiss,et al.  Is there a threshold level of fetal hemoglobin that ameliorates morbidity in sickle cell anemia , 1984 .

[53]  S. Orkin,et al.  The switch from fetal to adult hemoglobin. , 2013, Cold Spring Harbor perspectives in medicine.

[54]  C. Lottaz,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[55]  H. Ozçelik,et al.  The molecular basis of beta-thalassemia in Turkey. , 1992, Human genetics.