Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications

In this paper, we consider a generalized iterative process with errors to approximate the common fixed points of two asymptotically quasi-nonexpansive mappings. A convergence theorem has been obtained which generalizes a known result. This theorem has then been used to prove another convergence theorem which, in turn, generalizes a number of results.

[1]  Wataru Takahashi,et al.  APPROXIMATING COMMON FIXED POINTS OF TWO ASYMPTOTICALLY NONEXPANSIVE MAPPINGS , 2001 .

[2]  Safeer Hussain Khan,et al.  Convergence of two-step iterative scheme with errors for two asymptotically nonexpansive mappings , 2004, Int. J. Math. Math. Sci..

[3]  Liu Qihou,et al.  Iterative Sequences for Asymptotically Quasi-nonexpansive Mappings , 2001 .

[4]  D. I. Igbokwe,et al.  Approximation of fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces. , 2002 .

[5]  W. Takahashi ITERATIVE METHODS FOR APPROXIMATION OF FIXED POINTS AND THEIR APPLICATIONS , 2000 .

[6]  W. G. Dotson,et al.  Approximating fixed points of nonexpansive mappings , 1974 .

[7]  W. G. Dotson,et al.  Fixed points of quasi-nonexpansive mappings , 1972, Journal of the Australian Mathematical Society.

[8]  Safeer Hussain Khan,et al.  Weak and strong convergence of a scheme with errors for two nonexpansive mappings , 2005 .

[9]  J. Schu,et al.  Weak and strong convergence to fixed points of asymptotically nonexpansive mappings , 1991, Bulletin of the Australian Mathematical Society.

[10]  Hong-Kun Xu,et al.  Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process , 1993 .

[11]  Yuguang Xu,et al.  Ishikawa and Mann Iterative Processes with Errors for Nonlinear Strongly Accretive Operator Equations , 1998 .

[12]  Lishan Liu,et al.  Ishikawa and Mann Iterative Process with Errors for Nonlinear Strongly Accretive Mappings in Banach Spaces , 1995 .

[13]  M. Maiti,et al.  Approximating fixed points by ishikawa iterates , 1989, Bulletin of the Australian Mathematical Society.