Nondestructive Probing of Perovskite Silicon Tandem Solar Cells Using Multiwavelength Photoluminescence Mapping

In this paper, spatially resolved photoluminescence (PL) spectroscopy with various excitation wavelengths is presented as a nondestructive and versatile technique providing access to the individual subcells of multijunction solar cells. This method is demonstrated on a state-of-the-art monolithic tandem solar cell composed of a planar perovskite solar cell and a silicon heterojunction solar cell. It is shown that the lateral distribution of inhomogeneities can be attributed unambiguously to the individual cells and be related to the manufacturing process. The approach of depth-selective probing of the silicon bottom cell is verified by comparison to reflection maps and by comparison to measurements of the silicon cell after removing the perovskite top cell. Analyzing subcells integrated into a monolithic tandem solar cell is challenging though crucial in order to identify performance limiting loss mechanisms. This method can be used to improve the study of the mutual influence of adjacent subcells in the fully fabricated device, which has been an unfeasible task up to now.

[1]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[2]  B. Rech,et al.  Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells , 2016 .

[3]  W. Kwapil,et al.  Imaging of Metal Impurities in Silicon by Luminescence Spectroscopy and Synchrotron Techniques , 2010 .

[4]  Henry J. Snaith,et al.  Role of the crystallization substrate on the photoluminescence properties of organo-lead mixed halides perovskites , 2014 .

[5]  Wilhelm Warta,et al.  Efficiency limiting bulk recombination in multicrystalline silicon solar cells , 2012 .

[6]  Christophe Ballif,et al.  Sputtered rear electrode with broadband transparency for perovskite solar cells , 2015 .

[7]  Mercouri G Kanatzidis,et al.  Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. , 2014, Journal of the American Chemical Society.

[8]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[9]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[10]  S. Glunz,et al.  Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells , 2013, IEEE Journal of Photovoltaics.

[11]  Henry J. Snaith,et al.  Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification , 2016 .

[12]  Christophe Ballif,et al.  Ch 3 Nh 3 Pbi 3 Perovskite / Silicon Tandem Solar Cells: Characterization Based Optical Simulations , 2022 .

[13]  Arvind Shah,et al.  Efficiency limits for single-junction and tandem solar cells , 2006 .

[14]  Henk J. Bolink,et al.  Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging , 2016 .

[15]  H. Sirringhaus,et al.  Local Versus Long‐Range Diffusion Effects of Photoexcited States on Radiative Recombination in Organic–Inorganic Lead Halide Perovskites , 2015, Advanced science.

[16]  Christophe Ballif,et al.  Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells , 2016 .

[17]  B. Rech,et al.  Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[18]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[19]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[20]  Y. Kanemitsu,et al.  Photoluminescence spectra of perovskite oxide semiconductors , 2013 .

[21]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[22]  Rowan W. MacQueen,et al.  Electro- and photoluminescence imaging as fast screening technique of the layer uniformity and device degradation in planar perovskite solar cells , 2016 .

[23]  C. Ballif,et al.  Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[24]  Kaibo Zheng,et al.  Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold. , 2015, Physical chemistry chemical physics : PCCP.

[25]  Andrew Blakers,et al.  Semitransparent Perovskite Solar Cell With Sputtered Front and Rear Electrodes for a Four-Terminal Tandem , 2016, IEEE Journal of Photovoltaics.

[26]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[27]  M. Schubert,et al.  Separation of Front and Backside Surface Recombination by Photoluminescence Imaging on Both Wafer Sides , 2012, IEEE Journal of Photovoltaics.

[28]  F. Dimroth,et al.  Monolithic Two-Terminal III–V//Si Triple-Junction Solar Cells With 30.2% Efficiency Under 1-Sun AM1.5g , 2017, IEEE Journal of Photovoltaics.

[29]  Alain Goriely,et al.  Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States , 2014 .

[30]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[31]  M. Schubert,et al.  Spatially resolved carrier lifetime calibrated via quasi-steadystate photoluminescence , 2011 .

[32]  Ziv Hameiri,et al.  Photoluminescence and electroluminescence imaging of perovskite solar cells , 2015 .

[33]  Martin A. Green,et al.  Solar cell efficiency tables (version 48) , 2016 .

[34]  K. Catchpole,et al.  Tandem Solar Cells Based on High-Efficiency c-Si Bottom Cells: Top Cell Requirements for >30% Efficiency , 2014, IEEE Journal of Photovoltaics.

[35]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[36]  M. Grätzel,et al.  Optical analysis of CH3NH3SnxPb1–xI3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ta04840d Click here for additional data file. , 2016, Journal of materials chemistry. A.

[37]  C. Ballif,et al.  Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2). , 2016, The journal of physical chemistry letters.

[38]  M. Schubert,et al.  Spatially Resolved Impurity Identification via Temperature- and Injection-Dependent Photoluminescence Imaging , 2015, IEEE Journal of Photovoltaics.

[39]  Ye Chen,et al.  Thermal and environmental stability of semi-transparent perovskite solar cells for tandems by a solution-processed nanoparticle buffer layer and sputtered ITO electrode , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[40]  M. Schubert,et al.  Quantitative carrier lifetime measurement with micron resolution , 2010 .

[41]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[42]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[43]  M. Schubert,et al.  Analysing the effect of crystal size and structure in highly efficient CH3NH3PbI3 perovskite solar cells by spatially resolved photo- and electroluminescence imaging. , 2015, Nanoscale.