Foundations for engineering biology

Engineered biological systems have been used to manipulate information, construct materials, process chemicals, produce energy, provide food, and help maintain or enhance human health and our environment. Unfortunately, our ability to quickly and reliably engineer biological systems that behave as expected remains quite limited. Foundational technologies that make routine the engineering of biology are needed. Vibrant, open research communities and strategic leadership are necessary to ensure that the development and application of biological technologies remains overwhelmingly constructive.

[1]  T C MERRILL,et al.  At the turn of the century. , 1956, BMQ; the Boston medical quarterly.

[2]  Albert Britt Turn of the century , 1966 .

[3]  Lynn Conway,et al.  Introduction to VLSI systems , 1978 .

[4]  W Szybalski,et al.  Nobel prizes and restriction enzymes. , 1978, Gene.

[5]  A. Riggs,et al.  Expression in Escherichia coli of chemically synthesized genes for human insulin. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Murray,et al.  Construction of artificial chromosomes in yeast , 1983, Nature.

[7]  Abraham Peled,et al.  The next computer revolution , 1987 .

[8]  H. Varmus Reverse transcription. , 1987, Scientific American.

[9]  T. A. Armstrong,et al.  Insect Resistant Cotton Plants , 1990, Bio/Technology.

[10]  L. L. Lloyd,et al.  Enzyme nomenclature — Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology: Academic Press Ltd, London, UK, 1992. xiii + 862 pp. Price £40.00. ISBN 0-12-227165-3 , 1994 .

[11]  W. Stemmer,et al.  Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. , 1995, Gene.

[12]  S. Lindquist,et al.  Hsp90 as a capacitor for morphological evolution , 1998, Nature.

[13]  Nomenclature committee of the international union of biochemistry and molecular biology (NC-IUBMB), Enzyme Supplement 5 (1999). , 1999, European journal of biochemistry.

[14]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[15]  Ralph S. Baric,et al.  Strategy for Systematic Assembly of Large RNA and DNA Genomes: Transmissible Gastroenteritis Virus Model , 2000, Journal of Virology.

[16]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[17]  Phillip D. Zamore,et al.  RNA Interference , 2000, Science.

[18]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[19]  G M Whitesides,et al.  The once and future nanomachine. , 2001, Scientific American.

[20]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[21]  P. Sharp,et al.  RNA interference--2001. , 2001, Genes & development.

[22]  Albert-László Barabási,et al.  Systems biology. Life's complexity pyramid. , 2002, Science.

[23]  Albert-László Barabási,et al.  Life's Complexity Pyramid , 2002, Science.

[24]  Thomas F. Knight,et al.  DARPA BioComp Plasmid Distribution 1.00 of Standard Biobrick Components , 2002 .

[25]  J. Keasling,et al.  Engineering a mevalonate pathway in Escherichia coli for production of terpenoids , 2003, Nature Biotechnology.

[26]  C. Burge,et al.  Widespread selection for local RNA secondary structure in coding regions of bacterial genes. , 2003, Genome research.

[27]  Wendell A. Lim,et al.  Optimization of specificity in a cellular protein interaction network by negative selection , 2003, Nature.

[28]  Scot A Wolfe,et al.  Structure of a designed dimeric zinc finger protein bound to DNA. , 2003, Biochemistry.

[29]  Richard J. Roberts,et al.  REBASE: restriction enzymes and methyltransferases , 2003, Nucleic Acids Res..

[30]  A. Ninfa,et al.  Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli , 2003, Cell.

[31]  Robert Carlson,et al.  The pace and proliferation of biological technologies. , 2003, Biosecurity and bioterrorism : biodefense strategy, practice, and science.

[32]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[33]  G. Church,et al.  Accurate multiplex gene synthesis from programmable DNA microchips , 2004, Nature.

[34]  D. Owen,et al.  The Vocation Lectures , 2004 .

[35]  Christopher A. Voigt,et al.  Synthetic biology: Engineering Escherichia coli to see light , 2005, Nature.

[36]  Richard J. Roberts,et al.  REBASE—restriction enzymes and DNA methyltransferases , 2004, Nucleic Acids Res..

[37]  David E. Swayne,et al.  Characterization of the Reconstructed 1918 Spanish Influenza Pandemic Virus , 2005, Science.

[38]  M. Elowitz,et al.  Reconstruction of genetic circuits , 2005, Nature.

[39]  Bartholomew Canton,et al.  Engineering the Interface Between Cellular Chassis and Integrated Biological Systems , 2005 .

[40]  S. Carroll,et al.  Evolution at Two Levels: On Genes and Form , 2005, PLoS biology.

[41]  Thomas F Knight Engineering novel life , 2005, Molecular systems biology.

[42]  Drew Endy,et al.  Adventures in Synthetic Biology , 2005 .

[43]  D. Endy,et al.  Refactoring bacteriophage T7 , 2005, Molecular systems biology.

[44]  Marc W Kirschner,et al.  The Meaning of Systems Biology , 2005, Cell.

[45]  L. Hood,et al.  Reverse Engineering of Biological Complexity , 2007 .