Branching-Time Model Checking Gap-Order Constraint Systems

We consider the model checking problem for Gap-order Constraint Systems (GCS) w.r.t. the branching-time temporal logic CTL, and in particular its fragments EG and EF. GCS are nondeterministic infinitely branching processes described by evolutions of integer-valued variables, subject to Presburger constraints of the form x − y ≥ k, where x and y are variables or constants and k ∈ ℕ is a non-negative constant. We show that EG model checking is undecidable for GCS, while EF is decidable. In particular, this implies the decidability of strong and weak bisimulation equivalence between GCS and finite-state systems.

[1]  Antonín Kucera,et al.  Equivalence-checking on infinite-state systems: Techniques and results , 2002, Theory and Practice of Logic Programming.

[2]  Philippe Schnoebelen,et al.  Ackermannian and Primitive-Recursive Bounds with Dickson's Lemma , 2010, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[3]  Parosh Aziz Abdulla,et al.  Constrained Multiset Rewriting , 2002 .

[4]  R. V. Glabbeek CHAPTER 1 – The Linear Time - Branching Time Spectrum I.* The Semantics of Concrete, Sequential Processes , 2001 .

[5]  Amir M. Ben-Amram Size-Change Termination, Monotonicity Constraints and Ranking Functions , 2009, CAV.

[6]  Javier Esparza,et al.  Decidability of model checking for infinite-state concurrent systems , 1997, Acta Informatica.

[7]  Peter Z. Revesz,et al.  A Closed-Form Evaluation for Datalog Queries with Integer (Gap)-Order Constraints , 1993, Theor. Comput. Sci..

[8]  Amir M. Ben-Amram Size-Change Termination, Monotonicity Constraints and Ranking Functions , 2009, CAV.

[9]  R. V. Glabbeek The Linear Time-Branching Time Spectrum I The Semantics of Concrete , Sequential ProcessesR , 2007 .

[10]  Karlis Cerans,et al.  Deciding Properties of Integral Relational Automata , 1994, ICALP.

[11]  Laurent Fribourg,et al.  Symbolic Verification with Gap-Order Constraints , 1996, LOPSTR.

[12]  Deepak D'Souza,et al.  An automata-theoretic approach to constraint LTL , 2002, Inf. Comput..

[13]  Sriram K. Rajamani,et al.  Boolean Programs: A Model and Process for Software Analysis , 2000 .

[14]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[15]  Sophie Pinchinat,et al.  Verification of gap-order constraint abstractions of counter systems , 2012, Theor. Comput. Sci..

[16]  Ernst W. Mayr An Algorithm for the General Petri Net Reachability Problem , 1984, SIAM J. Comput..

[17]  Antonín Kucera,et al.  Deciding bisimulation-like equivalences with finite-state processes , 2001, Theor. Comput. Sci..

[18]  Laura Bozzelli Strong Termination for Gap-Order Constraint Abstractions of Counter Systems , 2012, LATA.

[19]  Richard Mayr,et al.  Deciding Bisimulation-Like Equivalences with Finite-State Processes , 1998, ICALP.

[20]  Stephen A. Cook,et al.  Boolean programs and quantified propositional proof systems , 1999 .