17 – Homeostatic Plasticity and post-Traumatic Epileptogenesis

[1]  M. Steriade,et al.  Waking-sleep modulation of paroxysmal activities induced by partial cortical deafferentation. , 2006, Cerebral cortex.

[2]  Igor Timofeev,et al.  Increased propensity to seizures after chronic cortical deafferentation in vivo. , 2006, Journal of neurophysiology.

[3]  T. Sejnowski,et al.  Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. , 2005, Cerebral cortex.

[4]  D. Prince,et al.  Impaired Cl- extrusion in layer V pyramidal neurons of chronically injured epileptogenic neocortex. , 2005, Journal of neurophysiology.

[5]  G. Turrigiano,et al.  Postsynaptic Expression of Homeostatic Plasticity at Neocortical Synapses , 2005, The Journal of Neuroscience.

[6]  Igor Timofeev,et al.  Modulation of synaptic transmission in neocortex by network activities , 2005, The European journal of neuroscience.

[7]  K M Jacobs,et al.  Excitatory and inhibitory postsynaptic currents in a rat model of epileptogenic microgyria. , 2005, Journal of neurophysiology.

[8]  M. Steriade,et al.  Neocortical seizures: initiation, development and cessation , 2004, Neuroscience.

[9]  E. Lynd-Balta,et al.  AMPA receptor alterations precede mossy fiber sprouting in young children with temporal lobe epilepsy , 2004, Neuroscience.

[10]  D. Prince,et al.  A critical period for prevention of posttraumatic neocortical hyperexcitability in rats , 2004, Annals of neurology.

[11]  Igor Timofeev,et al.  Hyperexcitability of intact neurons underlies acute development of trauma‐related electrographic seizures in cats in vivo , 2003, The European journal of neuroscience.

[12]  Igor Timofeev,et al.  Partial cortical deafferentation promotes development of paroxysmal activity. , 2003, Cerebral cortex.

[13]  P. Buckmaster,et al.  Axon Sprouting in a Model of Temporal Lobe Epilepsy Creates a Predominantly Excitatory Feedback Circuit , 2002, The Journal of Neuroscience.

[14]  Niraj S. Desai,et al.  Critical periods for experience-dependent synaptic scaling in visual cortex , 2002, Nature Neuroscience.

[15]  M. Chesselet,et al.  Synchronous Neuronal Activity Is a Signal for Axonal Sprouting after Cortical Lesions in the Adult , 2002, The Journal of Neuroscience.

[16]  D. Prince,et al.  Synaptic activity in chronically injured, epileptogenic sensory-motor neocortex. , 2002, Journal of neurophysiology.

[17]  B. Connors,et al.  The Spatial Dimensions of Electrically Coupled Networks of Interneurons in the Neocortex , 2002, The Journal of Neuroscience.

[18]  Mark C. W. van Rossum,et al.  Activity Deprivation Reduces Miniature IPSC Amplitude by Decreasing the Number of Postsynaptic GABAA Receptors Clustered at Neocortical Synapses , 2002, The Journal of Neuroscience.

[19]  Ivan Soltesz,et al.  Long‐term hyperexcitability in the hippocampus after experimental head trauma , 2001, Annals of neurology.

[20]  T. Schikorski,et al.  Inactivity Produces Increases in Neurotransmitter Release and Synapse Size , 2001, Neuron.

[21]  Sacha B. Nelson,et al.  Postsynaptic Depolarization Scales Quantal Amplitude in Cortical Pyramidal Neurons , 2001, The Journal of Neuroscience.

[22]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[23]  M. Massimini,et al.  Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. , 2001, Journal of neurophysiology.

[24]  M Steriade,et al.  Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  T. Sejnowski,et al.  Origin of slow cortical oscillations in deafferented cortical slabs. , 2000, Cerebral cortex.

[26]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of rhythmic recurrent activity in neocortex , 2000, Nature Neuroscience.

[27]  M. Brodie,et al.  Management of epilepsy in adolescents and adults , 2000, The Lancet.

[28]  M. V. Rossum,et al.  Activity Coregulates Quantal AMPA and NMDA Currents at Neocortical Synapses , 2000, Neuron.

[29]  C F Stevens,et al.  Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[30]  P. Kwan,et al.  Early identification of refractory epilepsy. , 2000, The New England journal of medicine.

[31]  X. Wang,et al.  Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory , 1999, The Journal of Neuroscience.

[32]  K. Miller,et al.  Increased pyramidal excitability and NMDA conductance can explain posttraumatic epileptogenesis without disinhibition: a model. , 1999, Journal of neurophysiology.

[33]  D. Prince,et al.  Tetrodotoxin prevents posttraumatic epileptogenesis in rats , 1999, Annals of neurology.

[34]  Sacha B. Nelson,et al.  Activity-dependent regulation of excitability in rat visual cortical neurons , 1999, Neurocomputing.

[35]  Niraj S. Desai,et al.  Plasticity in the intrinsic excitability of cortical pyramidal neurons , 1999, Nature Neuroscience.

[36]  G. Turrigiano Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same , 1999, Trends in Neurosciences.

[37]  Sacha B. Nelson,et al.  Synaptic depression: a key player in the cortical balancing act , 1998, Nature Neuroscience.

[38]  R. Huganir,et al.  Activity-Dependent Modulation of Synaptic AMPA Receptor Accumulation , 1998, Neuron.

[39]  S. Hestrin,et al.  Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex , 1998, Nature Neuroscience.

[40]  M. Marcikić,et al.  Management of war penetrating craniocerebral injuries during the war in Croatia. , 1998, Injury.

[41]  S. Nelson,et al.  BDNF Has Opposite Effects on the Quantal Amplitude of Pyramidal Neuron and Interneuron Excitatory Synapses , 1998, Neuron.

[42]  D. Prince,et al.  Cholinergic switching within neocortical inhibitory networks. , 1998, Science.

[43]  R. Nicoll,et al.  Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  A. Destexhe,et al.  Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. , 1998, Journal of neurophysiology.

[45]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[46]  Ann Marie Craig,et al.  Activity Regulates the Synaptic Localization of the NMDA Receptor in Hippocampal Neurons , 1997, Neuron.

[47]  D. Debanne,et al.  Lesion-induced axonal sprouting and hyperexcitability in the hippocampus in vitro: Implications for the genesis of posttraumatic epilepsy , 1997, Nature Medicine.

[48]  Y. Kawaguchi,et al.  Selective cholinergic modulation of cortical GABAergic cell subtypes. , 1997, Journal of neurophysiology.

[49]  Y. Amitai,et al.  Propagating neuronal discharges in neocortical slices: computational and experimental study. , 1997, Journal of neurophysiology.

[50]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[51]  G G Turrigiano,et al.  Brain-Derived Neurotrophic Factor Mediates the Activity-Dependent Regulation of Inhibition in Neocortical Cultures , 1997, The Journal of Neuroscience.

[52]  K M Jacobs,et al.  Chronic focal neocortical epileptogenesis: does disinhibition play a role? , 1997, Canadian journal of physiology and pharmacology.

[53]  Y. Yaari,et al.  Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. , 1997, Journal of neurophysiology.

[54]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[55]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[56]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[57]  Cornelius Borck,et al.  On the Structure of Ictal Events in Vitro , 1996, Epilepsia.

[58]  K. Obrietan,et al.  Glutamate hyperexcitability and seizure-like activity throughout the brain and spinal cord upon relief from chronic glutamate receptor blockade in culture , 1996, Neuroscience.

[59]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[60]  Paul Antoine Salin,et al.  Axonal sprouting in layer V pyramidal neurons of chronically injured cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[62]  JO McNamara,et al.  Cellular and molecular basis of epilepsy , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  P A Salin,et al.  Chronic neocortical epileptogenesis in vitro. , 1994, Journal of neurophysiology.

[64]  Y. Yaari,et al.  Variant firing patterns in rat hippocampal pyramidal cells modulated by extracellular potassium. , 1994, Journal of neurophysiology.

[65]  D. McCormick,et al.  Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1S,3R- ACPD , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  D. Prince,et al.  Epileptogenesis in chronically injured cortex: in vitro studies. , 1993, Journal of neurophysiology.

[67]  D. McCormick Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity , 1992, Progress in Neurobiology.

[68]  C. Stevens,et al.  Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  B W Connors,et al.  Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. , 1989, Journal of neurophysiology.

[70]  D. Potter,et al.  Seizure-like activity and cellular damage in rat hippocampal neurons in cell culture , 1989, Neuron.

[71]  B. Connors,et al.  Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. , 1989, Journal of neurophysiology.

[72]  M. Dichter,et al.  Cellular mechanisms of epilepsy: a status report. , 1987, Science.

[73]  C. Legéndy,et al.  Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons. , 1985, Journal of neurophysiology.

[74]  B. Connors,et al.  Mechanisms of neocortical epileptogenesis in vitro. , 1982, Journal of neurophysiology.

[75]  C. Ribak,et al.  Selective inhibitory synapse loss in chronic cortical slabs: a morphological basis for epileptic susceptibility. , 1982, Canadian journal of physiology and pharmacology.

[76]  A. C. Webb,et al.  The correlation between discharge times of neighbouring neurons in isolated cerebral cortex , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[77]  D. Prince,et al.  Extracellular potassium activity during epileptogenesis. , 1974, Experimental neurology.

[78]  C. Galletti,et al.  Maintained activity of single neurons in striate and non-striate areas of the cat visual cortex. , 1973, Brain research.

[79]  J A Hobson,et al.  Cortical unit activity in sleep and waking. , 1971, Electroencephalography and clinical neurophysiology.

[80]  W. R. Adey,et al.  Firing of neuron pairs in cat association cortex during sleep and wakefulness. , 1970, Journal of neurophysiology.

[81]  C. A. Marsan,et al.  CORTICAL CELLULAR PHENOMENA IN EXPERIMENTAL EPILEPSY: INTERICTAL MANIFESTATIONS. , 1964, Experimental neurology.

[82]  F A ECHLIN,et al.  EPILEPTIFORM SEIZURES FROM CHRONIC ISOLATED CORTEX. , 1963, Archives of neurology.

[83]  S. Sharpless,et al.  The electrical excitability of chronically isolated cortex studied by means of permanently implanted electrodes. , 1962, Electroencephalography and clinical neurophysiology.

[84]  D. Purpura,et al.  Morphological and physiological properties of chronically isolated immature neocortex. , 1961, Experimental neurology.

[85]  B. Grafstein,et al.  Some preliminary electrophysiological studies on chronic neuronally isolated cerebral cortex. , 1957, Electroencephalography and clinical neurophysiology.

[86]  B. Burns Some properties of isolated cerebral cortex in the unanaesthetized cat , 1951, The Journal of physiology.

[87]  Anita E Bandrowski,et al.  Cortical injury affects short-term plasticity of evoked excitatory synaptic currents. , 2005, Journal of neurophysiology.

[88]  Ivan Soltesz,et al.  Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. , 2005, Journal of neurophysiology.

[89]  A. Habets,et al.  Development in the absence of spontaneous bioelectric activity results in increased stereotyped burst firing in cultures of dissociated cerebral cortex , 2004, Experimental Brain Research.

[90]  O. Sakowitz,et al.  Neuronal activity determined by quantitative EEG and cortical microdialysis is increased following controlled cortical impact injury in rats. , 2002, Acta neurochirurgica. Supplement.

[91]  M. Brodie,et al.  The Star Systems , 2001 .

[92]  Richard L. Huganir,et al.  Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons , 1999, Nature Neuroscience.

[93]  D. Prince,et al.  Epileptogenic neurons and circuits. , 1999, Advances in neurology.

[94]  R. Dingledine,et al.  Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. , 1988, Journal of neurophysiology.

[95]  D. Prince,et al.  Neurophysiology of epilepsy. , 1978, Annual review of neuroscience.