The fouling of alloy‐800 heat exchange surfaces by magnetite particles

The deposition of magnetite particles from suspension in water at nominally 90°C onto Alloy-800 surfaces has been studied by chemical and radiotracing techniques under various conditions of flow, chemistry and boiling heat transfer. The experiments indicated that, under non-boiling conditions, mechanisms based on diffusion and thermophoresis control deposition while removal is negligible. For sub-cooled boiling at a low rate, the trapping of particles by bubbles is important; at a high rate, deposition during micro-layer evaporation dominates. Removal occurs during sub-cooled boiling and is nicely described by a mathematical model in which it proceeds concomitantly with deposition. La deposition de particules de magnetites en suspension dans l'eau a une temperature nominale de 90°C sur des surfaces d'Alliage-800 a ete etudiee par des techniques chimiques et de radio-tracage dans des conditions d'ecoulement, de chimie et de transfert de chaleur par ebullition variees. Les experiences indiquent que dans des conditions de non ebullition, les mecanismes bases sur la diffusion et la thermophorese contrǒle la deposition tandis que le retrait est negligeable. Pour l'ebullition sous-refroidie a une faible vitesse, la saisie des particules par les bulles est importante; a une vitesse elevee, la deposition pendant l'evaporation de la micro-couche domine. Le retrait se produit lors de l'ebullition sous-refroidie et est bien decrit par un modele mathematique faisant intervenir de facon concomitante le retrait et la deposition.

[1]  Yamato Asakura,et al.  Deposition of Iron Oxide on Heated Surfaces in Boiling Water , 1978 .

[2]  George A. Parks,et al.  The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems , 1965 .

[3]  T. Bott,et al.  HEAT EXCHANGER FOULING: A STUDY OF UNDERLYING MECHANISMS FOR PARTICULATE DEPOSITION , 1984 .

[4]  D. Charlesworth DEPOSITION OF CORROSION PRODUCTS IN BOILING WATER SYSTEMS. , 1970 .

[5]  Norman Epstein,et al.  Fine particle deposition in smooth parallel-plate channels , 1979 .

[6]  C. W. Turner Rates of particle deposition from aqueous suspensions in turbulent flow: a comparison of theory with experiment , 1993 .

[7]  P. Tewari,et al.  Temperature dependence of point of zero charge of alumina and magnetite , 1972 .

[8]  P. Tremaine,et al.  The solubility of magnetite and the hydrolysis and oxidation of Fe2+ in water to 300°C , 1980 .

[9]  E. Matijević,et al.  Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels , 1980 .

[10]  Norman Epstein,et al.  Particulate Fouling of Heat Transfer Surfaces: Mechanisms and Models , 1988 .

[11]  M. Cooper,et al.  The microlayer in nucleate pool boiling , 1969 .

[12]  A. B. Metzner,et al.  Theoretical analogies between heat, mass and momentum transfer and modifications for fluids of high prandtl or schmidt numbers , 1958 .

[13]  K. A. Burrill Corrosion product transport in water‐cooled nuclear reactors. Part III: Boiling water with indirect cycle operation , 1978 .

[14]  Hans Müller-Steinhagen,et al.  Influence of operating conditions on particulate fouling , 1988 .