The physics basis for ignition using indirect-drive targets on the National Ignition Facility

The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlrau...

[1]  J. Heikkinen,et al.  Ion acoustic nonlinearities in stimulated Brillouin scattering , 1984 .

[2]  W. Rozmus,et al.  Nonlocal electron transport in laser heated plasmas , 1998 .

[3]  Peter A. Amendt,et al.  Gas‐filled targets for large scale‐length plasma interaction experiments on Nova , 1995 .

[4]  H. Vu An Adiabatic Fluid Electron Particle-in-Cell Code for Simulating Ion-Driven Parametric Instabilities , 1996 .

[5]  Y. Lin,et al.  Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance. , 1996, Optics letters.

[6]  Bauer,et al.  Detailed Characterization of Electron Plasma Waves Produced by Stimulated Raman Scattering. , 1996, Physical review letters.

[7]  M. Rosen,et al.  A consistent approach to solving the radiation diffusion equation , 2003 .

[8]  A. Langdon,et al.  DYNAMICS OF PONDEROMOTIVE SELF-FOCUSING IN PLASMAS , 1991 .

[9]  Rosen,et al.  High temperatures in inertial confinement fusion radiation cavities heated with 0.35 microm light. , 1994, Physical review letters.

[10]  Denis G. Colombant,et al.  Direct-drive laser fusion: status and prospects , 1998 .

[11]  E. L. Lindman,et al.  Theory of stimulated scattering processes in laser‐irradiated plasmas , 1975 .

[12]  B. MacGowan,et al.  Laser scattering in large-scale-length plasmas relevant to National Ignition Facility hohlraums , 1996 .

[13]  William F. Krupke,et al.  IN HONOR OF ACADEMICIAN N. G. BASOV'S SIXTIETH BIRTHDAY: Future development of high-power solid-state laser systems , 1983 .

[14]  Diana Anderson,et al.  Variational approach to nonlinear self‐focusing of Gaussian laser beams , 1977 .

[15]  Kunioki Mima,et al.  Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression , 1984 .

[16]  J. Myatt,et al.  Kinetic Effects on the Ion Sound Waves Generated by Stimulated Brillouin Scattering of a Spatially Smoothed Laser Beam , 2000 .

[17]  H. K. Forsen,et al.  Fusion policy advisory committee: final report , 1991 .

[18]  Otto L. Landen,et al.  Status of our understanding and modeling of x-ray coupling efficiency in laser heated hohlraums , 2001 .

[19]  J. A. Paisner,et al.  The National Ignition Facility Project , 1994 .

[20]  J. Kilkenny,et al.  Four‐frame gated Wolter x‐ray microscope , 1990 .

[21]  Perry M. Bell,et al.  X-Ray Backlighting for the National Ignition Facility , 2000 .

[22]  R. Kirkwood,et al.  Resonant stimulated Brillouin interaction of opposed laser beams in a drifting plasma , 1998 .

[23]  P. Bell,et al.  Soft x-ray detection with diamond photoconductive detectors , 1990 .

[24]  D. W. Myers,et al.  Ultrasmooth plasma polymerized coatings for laser fusion targets , 1981 .

[25]  M. B. Nelson,et al.  LaNSA: A large neutron scintillator array for neutron spectroscopy at Nova , 1992 .

[26]  G. Bonnaud,et al.  Coherence properties of a smoothed laser beam in a hot plasma , 2000 .

[27]  J. Moody,et al.  X‐ray imaging of uniform large scale‐length plasmas created from gas‐filled targets on Nova , 1995 .

[28]  John Lindl,et al.  Progress toward Ignition and Burn Propagation in Inertial Confinement Fusion , 1992 .

[29]  W. Kruer Intense laser plasma interactions: From Janus to Nova , 1991 .

[30]  W. Kruer,et al.  Limitation of Brillouin scattering in plasmas , 1975 .

[31]  J. D. Moody,et al.  Thomson scattering from laser plasmas , 1999 .

[32]  R. Kirkwood,et al.  Measurements of laser-plasma instability relevant to ignition hohlraums , 1996 .

[33]  Joshua E. Rothenberg,et al.  Comparison of beam-smoothing methods for direct-drive inertial confinement fusion , 1997 .

[34]  Dan J. Thoma,et al.  The development and advantages of beryllium capsules for the National Ignition Facility , 1998 .

[35]  A. M. Winslow,et al.  Multi-group diffusion of energetic charged particles , 1975 .

[36]  Williams,et al.  Nonlinear theory and simulations of stimulated Brillouin backscatter in multispecies plasmas. , 1995, Physical review letters.

[37]  B. MacGowan,et al.  MEASUREMENTS OF SUPRATHERMAL ELECTRONS IN HOHLRAUM PLASMAS WITH X-RAY SPECTROSCOPY , 1998 .

[38]  Stephen E. Bodner,et al.  Rayleigh-Taylor Instability and Laser-Pellet Fusion , 1974 .

[39]  R. Betti,et al.  Self‐consistent stability analysis of ablation fronts with large Froude numbers , 1996 .

[40]  J. P. Watteau,et al.  Laser program development at CEL-V: overview of recent experimental results , 1986 .

[41]  Munro,et al.  Low stimulated Brillouin backscatter observed from large, hot plasmas in gas-filled Hohlraums. , 1995, Physical review letters.

[42]  John Lindl,et al.  Hydrodynamic stability and the direct drive approach to laser fusion , 1990 .

[43]  H T Powell,et al.  Kinoform phase plates for focal plane irradiance profile control. , 1994, Optics letters.

[44]  L. Suter,et al.  Analysis of K- and L-shell spectra from indirectly driven implosions , 1994 .

[45]  M. Rosenbluth,et al.  Parametric instabilities in the presence of space‐time random fluctuations , 1977 .

[46]  J. Kilkenny,et al.  Laser‐driven hydrodynamic instability experiments* , 1992 .

[47]  Peter A. Amendt,et al.  Indirect drive experiments utilizing multiple beam cones in cylindrical hohlraums on OMEGA , 1997 .

[48]  D. S. Montgomery,et al.  Recent Trident single hot spot experiments: Evidence for kinetic effects, and observation of Langmuir decay instability cascade , 2002 .

[49]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[50]  D. Henderson,et al.  Ablation stability of laser-driven implosions , 1974 .

[51]  H. Takabe,et al.  Influence of specularly reflected laser light on uniformity of implosion of indirect-drive fusion capsule , 1998 .

[52]  J. Moody,et al.  Imaging backscattered and near to backscattered light in ignition scale plasmas (invited) , 1997 .

[53]  G. Kyrala,et al.  TIME RESOLVED SIDE SCATTER DIAGNOSTICS AT NOVA , 1996 .

[54]  J. Moody,et al.  Production and characterization of large plasmas from gas bag targets on Nova , 1995 .

[55]  W. Rozmus,et al.  Stimulated Raman scattering in non-Maxwellian plasmas , 1997 .

[56]  M. Rosen,et al.  Radiation drive in laser‐heated hohlraums , 1996 .

[57]  Nakai,et al.  Dynamic behavior of rippled shock waves and subsequently induced areal-density-perturbation growth in laser-irradiated foils. , 1995, Physical review letters.

[58]  A. Bruce Langdon,et al.  Nonlinear Inverse Bremsstrahlung and Heated-Electron Distributions , 1980 .

[59]  J. Dawson,et al.  Trapped-Particle Instability , 1969 .

[60]  L. Suter,et al.  Drive characterization of indirect drive targets on the Nova laser (invited) , 1995 .

[61]  U. Alon,et al.  Scaling laws of the Rayleigh–Taylor ablation front mixing zone evolution in inertial confinement fusion , 1998 .

[62]  Luiz Eduardo Borges da Silva,et al.  Shock timing technique for the National Ignition Facility , 2001 .

[63]  R. Berger,et al.  Effect of plasma noise spectrum on stimulated scattering in inhomogeneous plasma , 1989 .

[64]  Stephan Brunner,et al.  Simulations of Electron Transport in Laser Hot Spots , 2001 .

[65]  Robert L. Kauffman,et al.  Measurement of 0.1-3-keV x rays from laser plasmas , 1986 .

[66]  Peter A. Amendt,et al.  HOHLRAUM RADIATION DRIVE MEASUREMENTS ON THE OMEGA LASER , 1997 .

[67]  Williams,et al.  Effect of Ion-Wave Damping on Stimulated Raman Scattering in High-Z Laser-Produced Plasmas. , 1996, Physical review letters.

[68]  Masakatsu Murakami,et al.  Indirectly driven targets for inertial confinement fusion , 1991 .

[69]  W. Kruer,et al.  Nonlinear features of stimulated Brillouin and Raman scattering , 1989 .

[70]  Guy Schurtz,et al.  A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes , 2000 .

[71]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[72]  R. Cook,et al.  Production and characterization of doped mandrels for inertial-confinement fusion experiments , 1994 .

[73]  R. P. Drake,et al.  The influence of subsidiary Langmuir decay on the spectrum of stimulated Raman scattering , 1991 .

[74]  D. Villeneuve,et al.  Stimulated Brillouin scattering in picosecond time scales: Experiments and modeling , 1993 .

[75]  Peter A. Amendt,et al.  Hohlraum symmetry measurements with surrogate solid targets , 1998 .

[76]  S. P. Hatchett,et al.  Neutron spectra from inertial confinement fusion targets for measurement of fuel areal density and charged particle stopping powers , 1987 .

[77]  J. Wallace,et al.  An analytical and numerical investigation of ion acoustic waves in a two‐ion plasma , 1994 .

[78]  J. Kilkenny,et al.  X‐ray radiographic imaging of hydrodynamic phenomena in radiation‐driven materials—Shock propagation, material compression, and shear flow* , 1994 .

[79]  T. S. Perry,et al.  X‐ray radiographic measurements of radiation‐driven shock and interface motion in solid density material , 1993 .

[80]  Epperlein Kinetic theory of laser filamentation in plasmas. , 1990, Physical review letters.

[81]  S. Ghosal,et al.  Two-dimensional plasma flow past a laser beam , 1997 .

[82]  O. Landen,et al.  X-ray diagnostics of hohlraum plasma flow , 1996 .

[83]  K. Nishihara,et al.  Rayleigh--Taylor instability on the pusher--fuel contact surface of stagnating targets , 1990 .

[84]  A. J. Morgan,et al.  Random phase plates for beam smoothing on the Nova laser. , 1993, Applied optics.

[85]  Hecht,et al.  Scale invariant mixing rates of hydrodynamically unstable interfaces. , 1994, Physical review letters.

[86]  R. Marjoribanks,et al.  Isoelectronic line intensity ratios for plasma electron temperature measurement (invited) , 1995 .

[87]  R. Short,et al.  Nonlocal heat transport effects on the filamentation of light in plasmas , 1992 .

[88]  S. N. Dixit,et al.  Electro-optic control of correlations in speckle statistics , 1994 .

[89]  S. Ghosal,et al.  Effect of smoothing by spectral dispersion on flow induced laser beam deflection: The random phase modulation scheme , 1998 .

[90]  P. Bell,et al.  High‐speed gated x‐ray imagers (invited) , 1988 .

[91]  R. Turner Achromatically filtered diamond photoconductive detectors for high power soft x-ray flux measurements , 1998 .

[92]  M. Lopez,et al.  The spatial location of laser-driven, forward-propagating waves in a National-Ignition-Facility-relevant plasma , 2000 .

[93]  G. Taylor The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[94]  O. Landen,et al.  Indirectly driven, high growth Rayleigh-Taylor implosions on Nova , 1995 .

[95]  E. Williams Ion wave saturation and Stimulated Brillouin Scattering , 1997 .

[96]  S. Glenzer,et al.  Radiative Jet Experiments of Astrophysical Interest Using Intense Lasers , 1999 .

[97]  U. Alon,et al.  Modal model for the nonlinear multimode Rayleigh–Taylor instability , 1996 .

[98]  O. Landen,et al.  x-ray spectroscopic diagnostics of mix in high growth factor spherical implosions , 1995 .

[99]  W. Rozmus,et al.  Nonlocal plasma electron hydrodynamics , 1996 .

[100]  John D. M. Edwards,et al.  Rayleigh–Taylor instability evolution in ablatively driven cylindrical implosions , 1996 .

[101]  H. Scott,et al.  GLF - A simulation code for X-ray lasers , 1994 .

[102]  J. D. Moody,et al.  Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing , 2001 .

[103]  H. Rose Saturation of Stimulated Brillouin Scatter by Self Consistent Flow Profile Modification , 1997 .

[104]  T. S. Perry,et al.  The flexible x‐ray imager , 1996 .

[105]  D. Harris,et al.  Ignition target design and robustness studies for the National Ignition Facility , 1996 .

[106]  A. Kaufman,et al.  Effects of beat-wave electron trapping on stimulated Raman and Thomson scattering , 1978 .

[107]  A. Luccio,et al.  Proceedings of the 1999 Particle Accelerator Conference , 1999 .

[108]  Alain Ghizzo,et al.  A Vlasov code for the numerical simulation of stimulated Raman scattering , 1990 .

[109]  Stefan Hüller,et al.  SBS reflectivity from spatially smoothed laser beams: Random phase plates versus polarization smoothing , 1998 .

[110]  D. Hinkel,et al.  OBSERVATIONS OF LASER-BEAM BENDING DUE TO TRANSVERSE PLASMA FLOW , 1998 .

[111]  J. Deardorff,et al.  Measurements on the Development of Thermal Turbulence in Air between Horizontal Plates , 1965 .

[112]  O. Landen,et al.  Diagnosis of pusher‐fuel mix in spherical implosions using x‐ray spectroscopy (invited) , 1995 .

[113]  O. L. Landen,et al.  Ablation Front Rayleigh- Taylor Growth Experiments in Spherically Convergent Geometry , 2000 .

[114]  U. Alon,et al.  Potential flow models of Rayleigh–Taylor and Richtmyer–Meshkov bubble fronts , 1994 .

[115]  H. Vu Three-dimensional particle-in-cell simulations of ion-driven parametric instabilities , 1997 .

[116]  R. Kirkwood,et al.  Observation of multiple mechanisms for stimulating ion waves in ignition scale plasmas. Revision 1 , 1997 .

[117]  Peter A. Amendt,et al.  A simple time-dependent analytic model of the P2 asymmetry in cylindrical hohlraums , 1999 .

[118]  C. Moller,et al.  Non-Maxwellian electron distributions and continuum X-ray emission in inverse Bremsstrahlung heated plasmas , 1988 .

[119]  Porter,et al.  The Rosseland Mean Opacity of a Mixture of Gold and Gadolinium at High Temperatures. , 1996, Physical review letters.

[120]  Weber,et al.  Laser-driven planar Rayleigh-Taylor instability experiments. , 1992, Physical review letters.

[121]  E. J. Hsieh,et al.  Use of large scale-length plasmas to study parametric plasma instabilities , 1995 .

[122]  D. F. DuBois,et al.  Quantitative comparison of reduced-description particle-in-cell and quasilinear-Zakharov models for parametrically excited Langmuir turbulence , 2000 .

[123]  R. B. Jacobs,et al.  Beta energy driven uniform deuterium--tritium ice layer in reactor-size cryogenic inertial fusion targets , 1988 .

[124]  Fuchs,et al.  First observation of ion acoustic waves produced by the langmuir decay instability , 2000, Physical review letters.

[125]  Ivan Catton,et al.  Three-dimensional Rayleigh-Taylor instability Part 2. Experiment , 1988, Journal of Fluid Mechanics.

[126]  J. Moody,et al.  OBSERVATION OF THE NONLINEAR SATURATION OF LANGMUIR WAVES DRIVEN BY PONDEROMOTIVE FORCE IN A LARGE SCALE PLASMA , 1999 .

[127]  S. Wilks,et al.  Theory and simulation of stimulated Raman scatter at near-forward angles , 1992 .

[128]  Rose,et al.  Observed Dependence of Stimulated Raman Scattering on Ion-Acoustic Damping in Hohlraum Plasmas. , 1996, Physical review letters.

[129]  R. D. Richtmyer Taylor instability in shock acceleration of compressible fluids , 1960 .

[130]  J. Virmont,et al.  Nonlocal heat transport due to steep temperature gradients , 1983 .

[131]  Murakami,et al.  Experimental observation of laser-induced radiation heat waves. , 1990, Physical review letters.

[132]  Uri Alon,et al.  Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws , 2001 .

[133]  C. Max Strong self‐focusing due to the ponderomotive force in plasmas , 1976 .

[134]  J. Kilkenny,et al.  K- and L-shell x-ray spectroscopic measurements of fuel and pusher dopants in indirectly driven ICF implosions , 1994 .

[135]  J. Moody,et al.  Measurements of high intensity laser beam transmission through a large scalelength plasma , 1997 .

[136]  B. MacGowan,et al.  Thomson scattering in the corona of laser-produced gold plasmas , 1996 .

[137]  E. Epperlein Kinetic simulations of laser filamentation in plasmas , 1991 .

[138]  V. Rozanov,et al.  Nonlinear stage in the development of hydrodynamic instability in laser targets , 1990 .

[139]  Hecht,et al.  Power Laws and Similarity of Rayleigh-Taylor and Richtmyer-Meshkov Mixing Fronts at All Density Ratios. , 1995, Physical review letters.

[140]  S. Anisimov,et al.  Ablative stabilization in the incompressible Rayleigh--Taylor instability , 1986 .

[141]  S. P. Obenschain,et al.  Use of induced spatial incoherence for uniform illumination on laser fusion targets. Memorandum report , 1983 .

[142]  B. Bezzerides Intrinsic bending of a laser beam in a flowing plasma , 1998 .

[143]  J. Lindl,et al.  Energy scaling of inertial confinement fusion targets for ignition and high gain , 1997 .

[144]  D. Hinkel,et al.  Stimulated Brillouin backscatter in the presence of transverse plasma flow , 1999 .

[145]  B. Remington,et al.  High precision Wölter optic calibration facility , 1995 .

[146]  J. Kilkenny High speed proximity focused X-ray cameras , 1991 .

[147]  Nishihara,et al.  Three-dimensional Rayleigh-Taylor instability of spherical systems. , 1990, Physical review letters.

[148]  Steven A. Orszag,et al.  Nonlinear effects of multifrequency hydrodynamic instabilities on ablatively accelerated thin shells , 1982 .

[149]  L. Suter,et al.  Use of thin wall imaging in the diagnosis of laser heated hohlraums , 1996 .

[150]  B. MacGowan,et al.  High-energy 4ω probe laser for laser-plasma experiments at Nova , 1999 .

[151]  T. Kessler,et al.  Laser Coherence Control: Technology and Applications , 1993 .

[152]  Shepard,et al.  Measurements of Electron Temperature by Spectroscopy in Hohlraum Targets. , 1996, Physical review letters.

[153]  Stephen D. Jacobs,et al.  Direct‐drive laser‐fusion experiments with the OMEGA, 60‐beam, >40 kJ, ultraviolet laser system , 1996 .

[154]  Roy Kishony,et al.  Ignition condition and gain prediction for perturbed inertial confinement fusion targets , 2001 .

[155]  Hiroshi Azechi,et al.  Experimental determination of fuel density‐radius product of inertial confinement fusion targets using secondary nuclear fusion reactions , 1986 .

[156]  O. Landen,et al.  Yield and emission line ratios from ICF target implosions with multi-mode Rayleigh-Taylor perturbations , 1996 .

[157]  Williams,et al.  Nonlocal electron heat transport by not quite Maxwell-Boltzmann distributions. , 1986, Physical review letters.

[158]  M. Goldman,et al.  Radiation-Induced Instability of Electron Plasma Oscillations , 1965 .

[159]  E. Campbell Recent results from the Nova program at LLNL , 1991 .

[160]  Stephen D. Jacobs,et al.  OMEGA upgrade laser for direct-drive target experiments , 1993 .

[161]  P. Bell,et al.  High Z x-ray spectroscopy of laser-imploded capsules , 1990 .

[162]  O. L. Landen,et al.  THOMSON SCATTERING FROM INERTIAL-CONFINEMENT-FUSION HOHLRAUM PLASMAS , 1997 .

[163]  Max Tabak,et al.  Design of a distributed radiator target for inertial fusion driven from two sides with heavy ion beams , 1998 .

[164]  G. Bonnaud,et al.  Nonlinear Raman scattering behavior with Langmuir and sound waves coupling in a homogeneous plasma , 1990 .

[165]  O. Landen,et al.  Recent progress in high-energy, high-resolution x-ray imaging techniques for application to the National Ignition Facility (invited) , 1999 .

[166]  Peter A. Amendt,et al.  Hohlraum symmetry measurements with surrogate solid targets (invited) , 1999 .

[167]  Scott C. Wilks,et al.  Energy transfer between crossing laser beams , 1996 .

[168]  Y. T. Lee A model for ionization balance and L-shell spectroscopy of non-LTE plasmas. , 1987 .

[169]  Paul E. Dimotakis,et al.  Transition stages of Rayleigh–Taylor instability between miscible fluids , 2000, Journal of Fluid Mechanics.

[170]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[171]  D. S. Bailey,et al.  High yield inertial confinement fusion target design for a z-pinch-driven hohlraum , 1999 .

[172]  D. Hinkel,et al.  Propagation of realistic beams in underdense plasma , 1998 .

[173]  H. Rose,et al.  Characterization of plasma and laser conditions for single hot spot experiments , 1999 .

[174]  G. Taylor,et al.  The mechanics of large bubbles rising through extended liquids and through liquids in tubes , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[175]  R. Sigel,et al.  The x-ray-driven heating wave , 1989 .

[176]  S. Haan,et al.  Weakly nonlinear hydrodynamic instabilities in inertial fusion , 1991 .

[177]  O. Landen,et al.  Fusion neutrons from the gas–pusher interface in deuterated-shell inertial confinement fusion implosions , 1998 .

[178]  S. Skupsky,et al.  Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser , 1999 .

[179]  John T. Hunt,et al.  Present And Future Performance Of The Nova Laser System , 1989 .

[180]  S. Skupsky,et al.  Irradiation uniformity for high-compression laser-fusion experiments , 1999 .

[181]  Turner,et al.  Modeling and interpretation of Nova's symmetry scaling data base. , 1994, Physical review letters.

[182]  J. D. Moody,et al.  Laser–plasma interactions in ignition‐scale hohlraum plasmas , 1996 .

[183]  D. Dubois,et al.  Transient enhancement and detuning of laser-driven parametric instabilities by particle trapping. , 2001, Physical review letters.

[184]  S. Orszag,et al.  Rayleigh-Taylor instability of fluid layers , 1987, Journal of Fluid Mechanics.

[185]  Richard Lee,et al.  Spectra—A model for K-shell spectroscopy☆ , 1984 .

[186]  R. Sigel,et al.  Self‐similar expansion of dense matter due to heat transfer by nonlinear conduction , 1983 .

[187]  R. Morse,et al.  NUMERICAL SIMULATION OF THE WEIBEL INSTABILITY IN ONE AND TWO DIMENSIONS. , 1971 .

[188]  Short,et al.  Damping of ion-acoustic waves in the presence of electron-ion collisions. , 1992, Physical review letters.

[189]  R. Short,et al.  Filamentation of laser light in flowing plasmas , 1982 .

[190]  A. Langdon,et al.  Resonantly excited nonlinear ion waves , 1997 .

[191]  J. Moody,et al.  FIRST MEASUREMENT OF SHORT LENGTH-SCALE DENSITY FLUCTUATIONS IN A LARGE LASER PLASMA , 1999 .

[192]  J. Moody,et al.  Observation of Energy Transfer between Identical-Frequency Laser Beams in a Flowing Plasma , 1998 .

[193]  M. Busquet Radiation-dependent ionization model for laser-created plasmas , 1993 .

[194]  J. Moody,et al.  Localization of Stimulated Brillouin Scattering in Random Phase Plate Speckles , 1998 .

[195]  D. Munro Rippled shock front solutions for testing hydrodynamic stability simulations , 1989 .

[196]  W. Rozmus,et al.  Theory of filamentation instability and stimulated Brillouin scattering with nonlocal hydrodynamics , 2000 .

[197]  Rose,et al.  Laser hot spots and the breakdown of linear instability theory with application to stimulated Brillouin scattering. , 1994, Physical review letters.

[198]  Emery,et al.  Rayleigh-Taylor instability growth rates in targets accelerated with a laser beam smoothed by induced spatial incoherence. , 1987, Physical review letters.

[199]  S. Laffite,et al.  Numerical analysis of spherically convergent Rayleigh-Taylor experiments on the Nova laser , 1999 .

[200]  C. Oberman,et al.  General theory of enhanced induced emission in plasmas , 1974 .

[201]  O L Landen,et al.  Hohlraum-driven high-convergence implosion experiments with multiple beam cones on the omega laser facility. , 2002, Physical review letters.

[202]  Nasa Cr X-RAY EMISSION FROM HIGH , 1974 .

[203]  H. Rose,et al.  Modification of stimulated Brillouin, saturated Raman scattering and strong Langmuir turbulence by nonlocal heat transport , 1992 .

[204]  J. D. Kilkenny,et al.  A new multichannel soft x‐ray framing camera for fusion experiments , 1992 .

[205]  A. C. Gaeris,et al.  The frequency and damping of ion acoustic waves in hydrocarbon (CH) and two‐ion‐species plasmas , 1995 .

[206]  Delamater,et al.  Reemission technique for symmetry measurements in Hohlraum targets containing a centered high-Z ball. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[207]  S. Hatchett,et al.  Novel symmetry tuning in Nova hohlraums using axial gold disks , 1996 .

[208]  M. Rosen,et al.  A comparative study of x-ray emission from laser spots in laser-heated hohlraums relative to spots on simple disk targets , 1997 .

[209]  J. Kilkenny,et al.  X‐ray spectroscopy of high‐energy density inertial confinement fusion plasmas , 1993 .

[210]  Peter A. Amendt,et al.  Design and modeling of ignition targets for the National Ignition Facility , 1995 .

[211]  L. Divol,et al.  Measurements of nonlinear growth of ion-acoustic waves in two-ion-species plasmas with thomson scattering. , 2002, Physical review letters.

[212]  C. Labaune,et al.  Modeling of the competition of stimulated Raman and Brillouin scatter in multiple beam experiments , 2001 .

[213]  Tsakiris,et al.  X-ray generation in a cavity heated by 1.3- or 0.44- microm laser light. III. Comparison of the experimental results with theoretical predictions for x-ray confinement. , 1988, Physical review. A, General physics.

[214]  J. Nuckolls,et al.  Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.

[215]  J. Moody,et al.  Evidence of plasma fluctuations and their effect on the growth of stimulated Brillouin and stimulated Raman scattering in laser plasmas , 1998 .

[216]  Scott C. Wilks,et al.  HYBRID PARTICLE-IN-CELL SIMULATIONS OF STIMULATED BRILLOUIN SCATTERING INCLUDING ION-ION COLLISIONS , 1997 .

[217]  M. Goldman,et al.  Parametrically Excited Plasma Fluctuations , 1967 .

[218]  Robert L. McCrory,et al.  Self‐consistent stability analysis of ablation fronts in inertial confinement fusion , 1996 .

[219]  R. Short,et al.  Comments on ‘‘Theory and three‐dimensional simulation of light filamentation in laser‐produced plasmas’’ [Phys. Fluids B 5, 2243 (1993)] , 1994 .

[220]  R. D. Jones,et al.  ``Flicker'' in small scale laser-plasma self-focusing , 1988 .

[221]  J. Meyer-ter-Vehn,et al.  Radiation symmetrization in indirectly driven ICF targets , 1991 .

[222]  Lawrence S. Mok,et al.  Noncontact thermal gradient method for fabrication of uniform cryogenic inertial fusion target , 1985 .

[223]  L. Divol,et al.  Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma. , 2001, Physical review letters.

[224]  Williams,et al.  First Optical Observation of Intensity Dependent Laser Beam Deflection in a Flowing Plasma. , 1996, Physical review letters.

[225]  C. Labaune,et al.  Time-resolved measurements of secondary Langmuir waves produced by the Langmuir decay instability in a laser-produced plasma , 1998 .

[226]  Goldstein,et al.  Super-transition-arrays: A model for the spectral analysis of hot, dense plasma. , 1989, Physical review. A, General physics.

[227]  Gardner,et al.  Ablative Rayleigh-Taylor instability in three dimensions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[228]  D. Youngs,et al.  Numerical simulation of turbulent mixing by Rayleigh-Taylor instability , 1984 .

[229]  A. B. Langdon,et al.  Filamentation and forward Brillouin scatter of entire smoothed and aberrated laser beams , 2000 .

[230]  L. V. Powers,et al.  Observation of reduced beam deflection using smoothed beams in gas-filled hohlraum symmetry experiments at Nova , 2000 .

[231]  Remington,et al.  Richtmyer-Meshkov experiments on the Nova laser at high compression. , 1993, Physical review letters.

[232]  R. P. Drake,et al.  Observation of the Langmuir decay instability driven by stimulated Raman scattering , 1997 .

[233]  Heinrich Hora,et al.  Laser Interaction and Related Plasma Phenomena , 2005 .

[234]  S. Depierreux,et al.  Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. II. Model description and comparison with experiments , 2001 .

[235]  Robert L. McCrory,et al.  Nonlinear Evolution of Ablation-Driven Rayleigh-Taylor Instability , 1981 .

[236]  E. L. Lindman,et al.  Plasma simulation studies of stimulated scattering processes in laser‐irradiated plasmas , 1975 .

[237]  J. McMullin,et al.  Hfater: A 2D laser propagation subroutine for underdense plasmas , 1984 .

[238]  Rozmus,et al.  Nonlocal electron transport in a plasma. , 1995, Physical review letters.

[239]  R. S. Craxton,et al.  Convective stimulated Raman scattering instability in UV laser plasmas , 1984 .

[240]  Weber,et al.  Multimode Rayleigh-Taylor experiments on Nova. , 1994, Physical review letters.

[241]  Richard A. Sacks,et al.  Direct drive cryogenic ICF capsules employing D-T wetted foam , 1987 .

[242]  A. Langdon,et al.  Nonlinear saturation and recurrence of the two-plasmon decay instability , 1979 .

[243]  Bradley,et al.  Dependence of stimulated Brillouin scattering on laser intensity, laser f number, and ion species in hohlraum plasmas. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[244]  T. M. O'Neil,et al.  Nonlinear Frequency Shift of an Electron Plasma Wave , 1972 .

[245]  Tadashi Sekiguchi,et al.  Plasma Physics and Controlled Nuclear Fusion Research , 1987 .

[246]  J. A. Fleck,et al.  An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport , 1971 .

[247]  Rose,et al.  Flow-induced beam steering in a single laser hot spot , 2000, Physical review letters.

[248]  Y. Lin,et al.  Distributed phase plates for super-Gaussian focal-plane irradiance profiles. , 1995, Optics letters.

[249]  R. Short,et al.  Landau damping and transit-time damping of localized plasma waves in general geometries , 1998 .

[250]  John Lindl,et al.  Two-dimensional simulation of fluid instability in laser-fusion pellets , 1975 .

[251]  D. Harris,et al.  The Ratio of D-T to D-D Reactions as a Measure of the Fuel Density-Radius Product in Initially Tritium-Free Inertial Confinement Fusion Targets , 1981 .

[252]  Keane,et al.  X-ray spectroscopic measurements of high densities and temperatures from indirectly driven inertial confinement fusion capsules. , 1993, Physical review letters.

[253]  S. Skupsky,et al.  First results from cryogenic target implosions on OMEGA , 2002 .

[254]  A. Schmitt,et al.  Time-dependent filamentation and stimulated Brillouin forward scattering in inertial confinement fusion plasmas , 1998 .

[255]  Hammel,et al.  Direct Measurement of X-Ray Drive from Surrogate Targets in Nova Hohlraums. , 1996, Physical review letters.

[256]  Daniel N. Baker,et al.  The role of symmetry in indirect‐drive laser fusion , 1995 .

[257]  Munro Analytic solutions for Rayleigh-Taylor growth rates in smooth density gradients. , 1988, Physical review. A, General physics.

[258]  T. P. Mitchell,et al.  ON THE STABILITY OF THE SPHERICAL SHAPE OF A VAPOR CAVITY IN A LIQUID , 1956 .

[259]  Harvey A. Rose Laser beam deflection by flow and nonlinear self‐focusing , 1996 .

[260]  Juan C Fernández,et al.  Observed insensitivity of stimulated Raman scattering on electron density , 2000 .

[261]  Barbara F. Lasinski,et al.  Heating by Raman Backscatter and Forward Scatter , 1980 .

[262]  Haan Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes. , 1989, Physical review. A, General physics.

[263]  G. Zimmerman,et al.  Pressure ionization in laser-fusion target simulation , 1980 .

[264]  M. Cable Implosion experiments at Nova , 1987 .

[265]  C. McKinstrie,et al.  POWER EXCHANGE BETWEEN CROSSED LASER BEAMS AND THE ASSOCIATED FREQUENCY CASCADE , 1997 .

[266]  G. Zimmerman,et al.  A new quotidian equation of state (QEOS) for hot dense matter , 1988 .

[267]  K. Sanbonmatsu,et al.  New Paradigm for the Self-Consistent Modeling of Wave-Particle and Wave-Wave Interactions in the Saturation of Electromagnetically Driven Parametric Instabilities , 1999 .

[268]  Blain,et al.  Energetics of Inertial Confinement Fusion Hohlraum Plasmas , 1998 .

[269]  Marilyn Schneider,et al.  Density ratio dependence of Rayleigh–Taylor mixing for sustained and impulsive acceleration histories , 2000 .

[270]  Joshua E. Rothenberg,et al.  Reduction of laser self-focusing in plasma by polarization smoothing , 1998 .

[271]  A. J. Barnard,et al.  Vlasov simulation of stimulated Raman scattering in one dimension , 1983 .

[272]  S. Ghosal,et al.  Nonlinear theory of power transfer between multiple crossed laser beams in a flowing plasma , 1998 .

[273]  D. Layzer,et al.  On the Instability of Superposed Fluids in a Gravitational Field. , 1955 .

[274]  Bauer,et al.  Location of ion-acoustic waves from back and side stimulated Brillouin scattering. , 1996, Physical review letters.

[275]  O. Landen,et al.  Review of drive symmetry measurement and control experiments on the Nova laser system (invited) , 1995 .

[276]  Gregory A. Moses,et al.  Inertial confinement fusion , 1982 .

[277]  John Lindl,et al.  A generalized scaling law for the ignition energy of inertial confinement fusion capsules , 2000 .

[278]  Joshua E. Rothenberg,et al.  Exploring the limits of the National Ignition Facility’s capsule coupling , 2000 .

[279]  Steven A. Orszag,et al.  Vortex simulations of the Rayleigh–Taylor instability , 1980 .

[280]  S. Depierreux,et al.  Nonlinear modification of laser–plasma interaction processes under crossed laser beams , 1999 .

[281]  J. Meyer-ter-Vehn,et al.  On energy gain of fusion targets: the model of Kidder and Bodner improved , 1982 .

[282]  D. Mourenas Saturation of stimulated Raman backscatter in strongly turbulent plasmas , 1999 .

[283]  W. Rozmus,et al.  Saturation of backward stimulated Raman scattering and enhancement of laser light scattering in plasmas , 1995 .

[284]  F. Amiranoff,et al.  Strong self-focusing in quasi-stationary laser plasmas , 2000 .

[285]  Hammel,et al.  Accuracy of K-shell spectra modeling in high-density plasmas , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[286]  Keane,et al.  Diagnosis of pusher-fuel mix in indirectly driven Nova implosions. , 1994, Physical review letters.

[287]  M. Rosen,et al.  Exploding pusher performance − A theoretical model , 1979 .

[288]  Town,et al.  Three-dimensional simulations of the implosion of inertial confinement fusion targets. , 1991, Physical review letters.

[289]  Williams,et al.  Laser Beam Deflection Induced by Transverse Plasma Flow. , 1996, Physical review letters.

[290]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[291]  Lobatchev,et al.  Ablative stabilization of the deceleration phase rayleigh-taylor instability , 2000, Physical review letters.

[292]  Uri Alon,et al.  Nonlinear evolution of multimode Rayleigh–Taylor instability in two and three dimensions , 1995 .

[293]  Kunioki Mima,et al.  Self‐consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma , 1985 .

[294]  O. Landen,et al.  Effects of variable x‐ray preheat shielding in indirectly driven implosions , 1996 .

[295]  B. MacGowan,et al.  THOMSON SCATTERING FROM HIGH-Z LASER-PRODUCED PLASMAS , 1999 .

[296]  J. D. Kilkenny,et al.  Experimental results on hydrodynamic instabilities in laser-accelerated planar packages , 1990 .

[297]  John Lindl,et al.  Ignition scaling laws and their application to capsule design , 2000 .

[298]  J. Moody,et al.  ELECTRON TEMPERATURE AND DENSITY MEASUREMENTS IN LASER-PRODUCED LARGE-SCALE-LENGTH GAS-BAG PLASMAS BY X-RAY SPECTROSCOPY , 1997 .

[299]  O. Landen,et al.  X-ray backlit imaging measurement of in-flight pusher density for an indirect drive capsule implosion , 1996 .

[300]  J. D. Kilkenny,et al.  High Speed Gated X-Ray Imagers , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[301]  A. Ram,et al.  Studies of stimulated Raman backscattering and associated nonlinear laser–plasma interactions , 2003 .

[302]  A. Kanaev,et al.  Three-dimensional analysis of the power transfer between crossed laser beams , 1996 .

[303]  A. R. Bell,et al.  Electron energy transport in ion waves and its relevance to laser‐produced plasmas , 1983 .

[304]  D. F. DuBois,et al.  Nonlinear saturation of stimulated Raman scattering in laser hot spots , 1999 .

[305]  Baker,et al.  Observation of Two Ion-Acoustic Waves in a Two-Species Laser-Produced Plasma with Thomson Scattering. , 1996, Physical review letters.

[306]  S. Glenzer Thomson Scattering in Inertial Confinement Fusion Research , 2000 .

[307]  C. Capjack,et al.  Interaction of crossed laser beams with plasmas , 1996 .

[308]  M. B. Nelson,et al.  Neutron spectroscopy with a large neutron time‐of‐flight detector array (LaNSA) (invited) , 1992 .

[309]  M. Rosen,et al.  New methods for diagnosing and controlling hohlraum drive asymmetry on Nova , 1997 .

[310]  V. Rozanov,et al.  Possibility of determining the characteristics of laser plasma by measuring the neutrons of the DT reaction , 1975 .

[311]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[312]  E. Epperlein Effect of electron collisions on ion‐acoustic waves and heat flow , 1994 .

[313]  J. D. Moody,et al.  Improved gas-filled hohlraum performance on Nova with beam smoothing , 1998 .

[314]  J. Moody,et al.  Strongly driven laser-plasma coupling , 1998 .

[315]  I. Catton,et al.  Three-dimensional Rayleigh-Taylor instability Part 1. Weakly nonlinear theory , 1988, Journal of Fluid Mechanics.

[316]  C. Joshi,et al.  Observation of resonant energy transfer between identical-frequency laser beams , 1998 .

[317]  M. S. Plesset,et al.  On the Stability of Fluid Flows with Spherical Symmetry , 1954 .

[318]  W. Hsing,et al.  Improved optical diagnostics for the NOVA laser , 1995 .

[319]  L. Divol,et al.  Thomson scattering measurements of saturated ion waves in laser fusion plasmas. , 2001, Physical review letters.

[320]  Robert L. McCrory,et al.  Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion , 1998 .

[321]  Samuel A. Letzring,et al.  Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light , 1989 .

[322]  Koji Tsubakimoto,et al.  Suppression of speckle contrast by using polarization property on second harmonic generation , 1993 .

[323]  A. B. Langdon,et al.  On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams , 1998 .

[324]  Peter A. Amendt,et al.  National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography , 2001 .

[325]  Bedros Afeyan,et al.  Kinetic Theory of Electron-Plasma and Ion-Acoustic Waves in Nonuniformly Heated Laser Plasmas , 1998 .

[326]  John M. Dawson,et al.  Optical Absorption and Expansion of Laser‐Produced Plasmas , 1969 .

[327]  Wong,et al.  Ionization processes and charge-state distribution in a highly ionized high- Z laser-produced plasma , 2000, Physical review letters.

[328]  H. Takabe,et al.  Rayleigh–Taylor instability in a spherically stagnating system , 1986 .

[329]  Weber,et al.  Three-dimensional single mode Rayleigh-Taylor experiments on nova. , 1995, Physical review letters.

[330]  Koji Tsubakimoto,et al.  Suppression of interference speckles produced by a random phase plate, using a polarization control plate , 1992 .

[331]  K. Sanbonmatsu,et al.  Laying a foundation for laser-plasma modeling for the national ignition facility , 2000 .

[332]  S. Glenzer,et al.  Electron distribution function in laser heated plasmas , 2001 .

[333]  J. D. Kilkenny,et al.  Single‐mode and multimode Rayleigh–Taylor experiments on Nova , 1995 .

[334]  R. Kirkwood,et al.  Observation of ion wave decay products of Langmuir waves generated by stimulated Raman scattering in ignition scale plasmas , 2003 .

[335]  J. Kilkenny,et al.  NONLINEAR RAYLEIGH-TAYLOR EVOLUTION OF A THREE-DIMENSIONAL MULTIMODE PERTURBATION , 1998 .

[336]  Moody,et al.  Observation of energy transfer between frequency-mismatched laser beams in a large-scale plasma. , 1996, Physical review letters.

[337]  J. Kilkenny,et al.  Large growth, planar Rayleigh–Taylor experiments on Nova , 1992 .

[338]  Munro,et al.  Large growth Rayleigh-Taylor experiments using shaped laser pulses. , 1991, Physical review letters.

[339]  A. Langdon,et al.  Filamentation and subsequent decay of laser light in plasmas , 1975 .

[340]  R. E. Marshak,et al.  Effect of Radiation on Shock Wave Behavior , 1958 .

[341]  A. Caruso,et al.  The Quality of the Illumination for a Spherical Capsule Enclosed in a Radiating Cavity , 1991 .

[342]  S. Orszag,et al.  Mode coupling in nonlinear Rayleigh–Taylor instability , 1992 .

[343]  V. T. Tikhonchuk,et al.  Stimulated Brillouin scattering reflectivity in the case of a spatially smoothed laser beam interacting with an inhomogeneous plasma , 1997 .

[344]  Joshua E. Rothenberg,et al.  Hohlraum energetics with smoothed laser beams , 2000 .

[345]  O. Landen,et al.  Three-dimensional simulations of Nova high growth factor capsule implosion experiments , 1996 .

[346]  J. Wallace,et al.  Symmetry experiments in gas-filled hohlraums at NOVA , 1996 .

[347]  Rose,et al.  Saturation of stimulated Raman scattering by the excitation of strong Langmuir turbulence. , 1993, Physical review letters.

[348]  Hiroaki Nishimura,et al.  X‐ray emission from high‐Z mixture plasmas generated with intense blue laser light , 1993 .

[349]  Joshua E. Rothenberg,et al.  Stimulated Raman and Brillouin scattering of polarization-smoothed and temporally smoothed laser beams , 1999 .

[350]  R. Short,et al.  Collisionless damping of localized plasma waves in laser-produced plasmas and application to stimulated Raman scattering in filaments , 1998 .

[351]  Z. M. Koenig,et al.  High-resolution X-ray spectroscopic diagnostics of laser-heated and ICF plasmas , 1991 .

[352]  Peter A. Amendt,et al.  Demonstration of time-dependent symmetry control in hohlraums by drive-beam staggering , 2000 .

[353]  Epstein,et al.  Electron-temperature measurement in laser-produced plasmas by the ratio of isoelectronic line intensities. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[354]  K. I. Read,et al.  Experimental investigation of turbulent mixing by Rayleigh-Taylor instability , 1984 .

[355]  R. Berger Nonlinear competition between stimulated Brillouin-scattered light waves in plasmas , 1983 .

[356]  Peter A. Amendt,et al.  Hohlraum Symmetry Experiments with Multiple Beam Cones on the Omega Laser Facility , 1998 .

[357]  Nelson,et al.  Indirectly driven, high convergence inertial confinement fusion implosions. , 1994, Physical review letters.

[358]  J. Moody,et al.  Measurements of near forward scattered laser light in a large inertial confinement fusion plasma (invited) , 1999 .

[359]  Nelson M. Hoffman,et al.  MEASUREMENT OF FEEDTHROUGH AND INSTABILITY GROWTH IN RADIATION-DRIVEN CYLINDRICAL IMPLOSIONS , 1997 .

[360]  A. B. Langdon,et al.  Theory and three‐dimensional simulation of light filamentation in laser‐produced plasma , 1993 .

[361]  M. Basko,et al.  IGNITION ENERGY SCALING OF INERTIAL CONFINEMENT FUSION TARGETS , 1998 .

[362]  Robert Cook,et al.  Review of indirect-drive ignition design options for the National Ignition Facility , 1999 .

[363]  Steven A. Orszag,et al.  Two‐phase flow analysis of self‐similar turbulent mixing by Rayleigh–Taylor instability , 1991 .

[364]  J. Knauer,et al.  Using cosmic rays to monitor large scintillator arrays , 1995 .

[365]  Tsakiris,et al.  Modeling of plasma dynamics in x-ray-confining cavities. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[366]  J. Hoffer,et al.  Radioactively induced sublimation in solid tritium. , 1988, Physical review letters.

[367]  A. Hauer,et al.  Measurements of early time radiation asymmetry in vacuum and methane-filled Hohlraums with the reemission ball technique , 1998 .