Denaturing gradient gel electrophoresis (DGGE) in microbial ecology.

[1]  G. Muyzer,et al.  Phylogenetic relationships ofThiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments , 1995, Archives of Microbiology.

[2]  W. Liesack,et al.  Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria , 1991, Microbial Ecology.

[3]  J. D. Elsas,et al.  Molecular Microbial Ecology Manual , 2013, Springer Netherlands.

[4]  D. M. Ward,et al.  Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures , 1997, Antonie van Leeuwenhoek.

[5]  M. Curtis,et al.  in environmental samples , 2002 .

[6]  E. Topp,et al.  Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs , 1997 .

[7]  G. Muyzer,et al.  Genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samples , 1997, Applied and environmental microbiology.

[8]  G. Muyzer,et al.  Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp , 1997, Applied and environmental microbiology.

[9]  G. Muyzer,et al.  Copyright © 1997, American Society for Microbiology PCR Primers To Amplify 16S rRNA Genes from Cyanobacteria , 1997 .

[10]  Antje Wichels Untersuchungen zur Diversität mariner Bakteriophagen und zu ihrer Verbreitung in der Nordsee , 1997 .

[11]  K. Straub,et al.  Screening for Genetic Diversity of Isolates of Anaerobic Fe(II)-oxidizing Bacteria Using DGGE and Wh , 1997 .

[12]  H. Backhaus,et al.  Direct ribosome isolation from soil to extract bacterial rRNA for community analysis , 1996, Applied and environmental microbiology.

[13]  D. M. Ward,et al.  Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat , 1996, Applied and environmental microbiology.

[14]  R. Herwig,et al.  Phylogenetic analysis of the bacterial communities in marine sediments , 1996, Applied and environmental microbiology.

[15]  M. Ferrari,et al.  Temperature-programmed capillary electrophoresis for detection of DNA point mutations. , 1996, BioTechniques.

[16]  G. Muyzer,et al.  Molecular identification of bacteria from a coculture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures , 1996, Applied and environmental microbiology.

[17]  M. Millar,et al.  Application of 16S rRNA gene PCR to study bowel flora of preterm infants with and without necrotizing enterocolitis , 1996, Journal of clinical microbiology.

[18]  R. Amann,et al.  Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis , 1996, Journal of bacteriology.

[19]  G. Muyzer,et al.  Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium , 1996, Applied and environmental microbiology.

[20]  Y. Zo,et al.  Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism , 1996, Applied and environmental microbiology.

[21]  G. Krupp,et al.  Molecular differentiation of bacteria by PCR amplification of the 16S–23S rRNA spacer , 1996 .

[22]  A. E. Murray,et al.  Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments , 1996, Applied and environmental microbiology.

[23]  J. Borneman,et al.  Molecular microbial diversity of an agricultural soil in Wisconsin , 1996, Applied and environmental microbiology.

[24]  M. MacDonell,et al.  Direct 5S rRNA Assay for Monitoring Mixed-Culture Bioprocesses , 1996, Applied and environmental microbiology.

[25]  G. Muyzer,et al.  Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments , 1996, Applied and environmental microbiology.

[26]  S. Giovannoni,et al.  Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR , 1996, Applied and environmental microbiology.

[27]  D. M. Ward,et al.  Denaturing Gradient Gel Electrophoresis Profiles of 16 S rRNA-Defined Populations Inhabiting a Hot Spring Microbial Mat Community , 1996 .

[28]  Andreas P Teske Phylogenetische und ökologische Untersuchungen an Bakterien des oxidativen und reduktiven marinen Schwefelkreislaufs mittels ribosomaler RNA , 1996 .

[29]  E. Katsivela,et al.  Low-molecular-mass RNA fingerprinting of bacteria by capillary electrophoresis using entangled polymer solutions , 1995 .

[30]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. , 1995, Microbiological reviews.

[31]  X. Xia,et al.  Molecular genetic analysis of the response of three soil microbial communities to the application of 2, 4‐D , 1995, Molecular ecology.

[32]  Effect of cellular physiology on PCR amplification efficiency , 1995, Molecular ecology.

[33]  A. Massol-Deyá,et al.  Bacterial community fingerprinting of amplified 16S and 16–23S ribosomal DNA gene sequences and restriction endonuclease analysis(ARDRA) , 1995 .

[34]  Jaap Bloem,et al.  Fluorescent staining of microbes for total direct counts , 1995 .

[35]  C. Wawer,et al.  A simple and rapid electrophoresis method to detect sequence variation in PCR-amplified DNA fragments. , 1995, Nucleic acids research.

[36]  A. Simpson,et al.  Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. , 1994, BioTechniques.

[37]  N. Pace,et al.  Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. M. Ward,et al.  Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms , 1994, Applied and environmental microbiology.

[39]  G. Muyzer,et al.  Determination of the genetic diversity of microbial communities using DGGE analysis of PCR-amplified 16S rDNA , 1994 .

[40]  M. Jensen,et al.  Effect of PCR conditions on the formation of heteroduplex and single-stranded DNA products in the amplification of bacterial ribosomal DNA spacer regions. , 1993, PCR methods and applications.

[41]  M. G. Lorenz,et al.  Use of polymerase chain reaction and electroporation of Escherichia coli to monitor the persistence of extracellular plasmid DNA introduced into natural soils , 1993, Applied and environmental microbiology.

[42]  J. Fuhrman,et al.  Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific oceans , 1993, Applied and environmental microbiology.

[43]  A. Uitterlinden,et al.  Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA , 1993, Applied and environmental microbiology.

[44]  W. Liesack,et al.  Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[45]  M. Höfle Bacterioplankton community structure and dynamics after large-scale release of nonindigenous bacteria as revealed by low-molecular-weight-RNA analysis , 1992, Applied and environmental microbiology.

[46]  N. Pace,et al.  Differential amplification of rRNA genes by polymerase chain reaction , 1992, Applied and environmental microbiology.

[47]  W. Liesack,et al.  Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment , 1992, Journal of bacteriology.

[48]  A. Davis Novel major archaebacterial group from marine plankton , 1992, Nature.

[49]  V. Sheffield,et al.  A simple and efficient method for attachment of a 40-base pair, GC-rich sequence to PCR-amplified DNA. , 1992, BioTechniques.

[50]  D. M. Ward,et al.  Ribosomal RNA Analysis of Microorganisms as They Occur in Nature , 1992 .

[51]  V. Stanton,et al.  Use of denaturing gradient gel electrophoresis to study conformational transitions in nucleic acids. , 1992, Methods in enzymology.

[52]  J. Fuhrman,et al.  Spatial and temporal variation of natural bacterioplankton assemblages studied by total genomic DNA cross‐hybridization , 1991 .

[53]  C. Meyer,et al.  Direct sequencing of variable HLA gene segments after in vitro amplification and allele separation by temperature-gradient gel electrophoresis. , 1991, Journal of immunological methods.

[54]  J. Mattick,et al.  'Touchdown' PCR to circumvent spurious priming during gene amplification. , 1991, Nucleic acids research.

[55]  B J Bassam,et al.  Fast and sensitive silver staining of DNA in polyacrylamide gels. , 1991, Analytical biochemistry.

[56]  E. Delong,et al.  Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing , 1991, Journal of bacteriology.

[57]  D. M. Ward,et al.  16S rRNA sequences of uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly primed cDNA , 1991, Applied and environmental microbiology.

[58]  J. Lanzillo Chemiluminescent nucleic acid detection with digoxigenin-labeled probes: a model system with probes for angiotensin converting enzyme which detect less than one attomole of target DNA. , 1991, Analytical biochemistry.

[59]  C. Binnie Designing the optimal oligo. , 1991, Trends in biotechnology.

[60]  S. Giovannoni,et al.  Genetic diversity in Sargasso Sea bacterioplankton , 1990, Nature.

[61]  J. Fuhrman,et al.  DNA hybridization to compare species compositions of natural bacterioplankton assemblages , 1990, Applied and environmental microbiology.

[62]  V. Torsvik,et al.  High diversity in DNA of soil bacteria , 1990, Applied and environmental microbiology.

[63]  W. Thilly,et al.  Fidelity of DNA polymerases in DNA amplification. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Henry A. Erlich,et al.  PCR Technology: Principles and Applications for DNA Amplification , 1989 .

[65]  V. Sheffield,et al.  Mutation Detection by PCR, GC-Clamps, and Denaturing Gradient Gel Electrophoresis , 1989 .

[66]  V. Sheffield,et al.  Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[67]  W. Thilly,et al.  DNA damage produced by ethidium bromide staining and exposure to ultraviolet light. , 1988, Nucleic acids research.

[68]  K. Mullis,et al.  Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. , 1988, Science.

[69]  O. Kandler,et al.  International Committee on Systematic Bacteriology: announcement of the report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. , 1987, Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology.

[70]  K. Davies,et al.  Genome analysis : a practical approach , 1988 .

[71]  Val C. Sheffield,et al.  Detection of single base changes in DNA: ribonuclease cleavage and denaturing gradient gel electrophoresis. , 1988 .

[72]  D. Riesner,et al.  Temperature-gradient gel electrophoresis. Thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. , 1987, Biophysical chemistry.

[73]  R. Myers,et al.  Detection and localization of single base changes by denaturing gradient gel electrophoresis. , 1987, Methods in enzymology.

[74]  R. Myers,et al.  Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. , 1985, Nucleic acids research.

[75]  L. Lerman,et al.  Sequence-determined DNA separations. , 1984, Annual review of biophysics and bioengineering.

[76]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[77]  L. Lerman,et al.  DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[78]  C. Merril,et al.  Silver staining of DNA in polyacrylamide gels: Linearity and effect of fragment size , 1982 .

[79]  E. Kawashima,et al.  Use of synthetic oligonucleotides as hybridization probes: isolation of cloned cDNA sequences for human beta 2-microglobulin. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[80]  L. Lerman,et al.  Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis , 1979, Cell.

[81]  J. Hansen Electrophoresis of ribonucleic acid on a polyacrylamide gel which contains disulfide cross-linkages. , 1976, Analytical biochemistry.