Retinal Anatomy and Electrode Array Position in Retinitis Pigmentosa Patients After Argus II Implantation: An International Study.

[1]  P. Rosenfeld,et al.  Swept-Source OCT Imaging of the Argus II Epiretinal Prosthesis. , 2017, Ophthalmology. Retina.

[2]  José-Alain Sahel,et al.  Adapted Surgical Procedure for Argus II Retinal Implantation: Feasibility, Safety, Efficiency, and Postoperative Anatomic Findings. , 2017, Ophthalmology. Retina.

[3]  F. Parmeggiani,et al.  Optical Coherence Tomography Imaging in the Management of the Argus II Retinal Prosthesis System , 2017, European journal of ophthalmology.

[4]  Justis P. Ehlers,et al.  Intraoperative OCT Imaging of the Argus II Retinal Prosthesis System. , 2016, Ophthalmic surgery, lasers & imaging retina.

[5]  Gislin Dagnelie,et al.  Five-Year Safety and Performance Results from the Argus II Retinal Prosthesis System Clinical Trial. , 2016, Ophthalmology.

[6]  Jessy D. Dorn,et al.  Improvements in vision‐related quality of life in blind patients implanted with the Argus II Epiretinal Prosthesis , 2016, Clinical & experimental optometry.

[7]  James D. Weiland,et al.  Evaluation of effects of electrical stimulation in the retina with optical coherence tomography , 2016, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[8]  Michael I. Seider,et al.  Argus II retinal prosthesis malrotation and repositioning with intraoperative optical coherence tomography in a posterior staphyloma , 2015, Clinical ophthalmology.

[9]  Jessy D. Dorn,et al.  Factors Affecting Perceptual Threshold in Argus II Retinal Prosthesis Subjects. , 2013, Translational vision science & technology.

[10]  Jessy D. Dorn,et al.  The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss , 2013, British Journal of Ophthalmology.

[11]  C. Grimm,et al.  Transcorneal electrical stimulation shows neuroprotective effects in retinas of light-exposed rats. , 2012, Investigative ophthalmology & visual science.

[12]  Eberhart Zrenner,et al.  Gene expression profiling of the retina after transcorneal electrical stimulation in wild-type Brown Norway rats. , 2011, Investigative ophthalmology & visual science.

[13]  V. Chowdhury,et al.  Evaluation of patient suitability for a retinal prosthesis using structural and functional tests of inner retinal integrity , 2009, Journal of neural engineering.

[14]  Arup Roy,et al.  Factors affecting perceptual thresholds in epiretinal prostheses. , 2008, Investigative ophthalmology & visual science.

[15]  Y. Fukuda,et al.  Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system. , 2005, Investigative ophthalmology & visual science.

[16]  A. Y. Chow,et al.  Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats , 2005, Journal of neural engineering.

[17]  A. Y. Chow,et al.  The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. , 2004, Archives of ophthalmology.

[18]  Ben A. Barres,et al.  Retinal Ganglion Cells Do Not Extend Axons by Default Promotion by Neurotrophic Signaling and Electrical Activity , 2002, Neuron.

[19]  A. Milam,et al.  Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. , 1997, Archives of ophthalmology.

[20]  N. Gregori,et al.  Bimanual Technique for Retinal Tacking of Epiretinal Prosthesis. , 2016, Retina.