AI techniques for the game of Go

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication

[1]  Dana S. Nau Pathology on Game Trees: A Summary of Results , 1980, AAAI.

[2]  Ernest Davis,et al.  Adversarial reasoning: a logical approach for computer go , 2001 .

[3]  P.A.T. van Eck,et al.  A Compositional Semantic Structure for Multi-Agent Systems Dynamics , 2001 .

[4]  Carl Ebeling,et al.  Measuring the Performance Potential of Chess Programs , 1990, Artif. Intell..

[5]  Jonathan Schaeffer,et al.  Search Versus Knowledge in Game-Playing Programs Revisited , 1997, IJCAI.

[6]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[7]  Thomas R. Lincke,et al.  Strategies for the Automatic Construction of Opening Books , 2000, Computers and Games.

[8]  Robert M. Hyatt,et al.  Book Learning - a Methodology to Tune an Opening Book Automatically , 1999, J. Int. Comput. Games Assoc..

[9]  H. Jaap van den Herik,et al.  Solving Go on Small Boards , 2003, J. Int. Comput. Games Assoc..

[10]  Zhixing Chen,et al.  Semi-Empirical Quantitative Theory of Go Part I: Estimation of the Influence of a Wall , 2002, J. Int. Comput. Games Assoc..

[11]  H. Jaap van den Herik,et al.  Learning to score final positions in the game of Go , 2003, Theor. Comput. Sci..

[12]  Horst Remus,et al.  Simulation of a Learning Machine for Playing GO , 1962, IFIP Congress.

[13]  Thomas Wolf,et al.  Optimizing GoTools' Search Heuristics using Genetic Algorithms , 2003, J. Int. Comput. Games Assoc..

[14]  Jonathan Schaeffer,et al.  Learning to Play Strong Poker , 1999, ICML 1999.

[15]  Roelof van Zwol Modelling and searching web-based document collections , 2002 .

[16]  Bruno Bouzy Mathematical Morphology Applied to Computer Go , 2003, Int. J. Pattern Recognit. Artif. Intell..

[17]  T. Anthony Marsland,et al.  Learning extension parameters in game-tree search , 2003, Inf. Sci..

[18]  Nick Wedd Goemate Wins Go Tournament , 2000, J. Int. Comput. Games Assoc..

[19]  Koen V. Hindriks,et al.  Agent programming languages: programming with mental models , 2001 .

[20]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[21]  N. Peek Decision-theoretic planning of clinical patient management , 2000 .

[22]  Anil K. Jain,et al.  39 Dimensionality and sample size considerations in pattern recognition practice , 1982, Classification, Pattern Recognition and Reduction of Dimensionality.

[23]  Albert Lindsey Zobrist,et al.  Feature extraction and representation for pattern recognition and the game of go , 1970 .

[24]  L. J. Kortmann The resolution of visually guided behaviour , 2003 .

[25]  Aske Plaat,et al.  RESEARCH RE: SEARCH & RE-SEARCH , 1996 .

[26]  Jonathan Leonard Ryder,et al.  Heuristic analysis of large trees as generated in the game of Go , 1971 .

[27]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[28]  長井 歩,et al.  Df-pn algorithm for searching AND/OR trees and its applications , 2002 .

[29]  Henk Ernst Blok Database Optimization Aspects for Information Retrieval , 2002 .

[30]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[31]  Herbert D. Enderton The Golem Go Program , 1991 .

[32]  Jos W. H. M. Uiterwijk,et al.  Learning connectedness in binary images , 2001 .

[33]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[34]  Barak A. Pearlmutter,et al.  Equivalence Proofs for Multi-Layer Perceptron Classifiers and the Bayesian Discriminant Function , 1991 .

[35]  Alexander Reinefeld,et al.  An Improvement to the Scout Tree Search Algorithm , 1983, J. Int. Comput. Games Assoc..

[36]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[37]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[38]  H. Jaap van den Herik,et al.  Games solved: Now and in the future , 2002, Artif. Intell..

[39]  Thomas G. Dietterich State Abstraction in MAXQ Hierarchical Reinforcement Learning , 1999, NIPS.

[40]  H. Stuckenschmidt,et al.  Ontology-Based Information Sharing in Weakly Structured Environments , 2003 .

[41]  Eric O. Postma,et al.  The Neural MoveMap Heuristic in Chess , 2002, Computers and Games.

[42]  Chris McConnell,et al.  B Probability Based Search , 1996, Artif. Intell..

[43]  Eugueni Smirnov,et al.  Conjunctive and Disjunctive Version Spaces with Instance-based Boundary Sets , 2001 .

[44]  Bruno Bouzy,et al.  Monte-Carlo Go Developments , 2003, ACG.

[45]  Akihiro Kishimoto,et al.  DF-PN in Go: An Application to the One-Eye Problem , 2003, ACG.

[46]  Neerincx,et al.  Human-computer interaction and presence in virtual reality exposure therapy , 2003 .

[47]  S. J. Karlsson Scalable distributed data structures for database management , 2000 .

[48]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[49]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[50]  Fredrik A. Dahl,et al.  Honte, a go-playing program using neural nets , 2001 .

[51]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Takashi Chikayama,et al.  Game-tree Search Algorithm based on Realization Probability , 2002, J. Int. Comput. Games Assoc..

[53]  M. Petkovic,et al.  Content-based Video Retrieval Supported by Database Technology , 2003 .

[54]  H. Jaap van den Herik,et al.  The Advantage of the Initiative , 2000, Inf. Sci..

[55]  Paul J. Werbos,et al.  Backpropagation Through Time: What It Does and How to Do It , 1990, Proc. IEEE.

[56]  H.H.L.M. Donkers,et al.  NOSCE HOSTEM: Searching with Opponent Models , 1997 .

[57]  Ernst A. Heinz,et al.  Scalable Search in Computer Chess , 2000, Computational Intelligence.

[58]  Terrence J. Sejnowski,et al.  Temporal Difference Learning of Position Evaluation in the Game of Go , 1993, NIPS.

[59]  Barry L. Nelson,et al.  Hash Tables in Cray Blitz , 1985, J. Int. Comput. Games Assoc..

[60]  M. A. Wiering TD Learning of Game Evaluation Functions with Hierarchies Neural Architectures , 1995 .

[61]  Tristan Cazenave,et al.  Automatic Acquisition of Tactical Go Rules , 2001 .

[62]  M. Enzenberger The Integration of A Priori Knowledge into a Go Playing Neural Network , 1996 .

[63]  Bernd Brügmann Max-Planck Monte Carlo Go , 1993 .

[64]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[65]  Martin Müller,et al.  Computer go as a sum of local games: an application of combinatorial game theory , 1995 .

[66]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[67]  Markus Enzenberger,et al.  Evaluation in Go by a Neural Network using Soft Segmentation , 2003, ACG.

[68]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[69]  Howard A. Landman,et al.  Eyespace Values in Go , 1996 .

[70]  A. J. Lehmann Causation in artificial intelligence and law : a modelling approach , 2003 .

[71]  Robert P.W. Duin,et al.  PRTools3: A Matlab Toolbox for Pattern Recognition , 2000 .

[72]  Martin T. Hagan,et al.  Neural network design , 1995 .

[73]  Jonathan Schaeffer,et al.  Kasparov versus Deep Blue: The Rematch , 1997, J. Int. Comput. Games Assoc..

[74]  Jürgen Schmidhuber,et al.  HQ-Learning , 1997, Adapt. Behav..

[75]  Jacco van Ossenbruggen,et al.  Processing structured hypermedia - a matter of style , 2001, SIKS dissertation series.

[76]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[77]  Martin Müller Position Evaluation in Computer Go , 2002, J. Int. Comput. Games Assoc..

[78]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[79]  Albert L. Zobrist,et al.  A model of visual organization for the game of GO , 1899, AFIPS '69 (Spring).

[80]  Takuya Kojima,et al.  Automatic Acquisition of Go Knowledge from Game Records: Deductive and Evolutionary Approaches , 1998 .

[81]  Johannes Fürnkranz,et al.  Machine learning in games: a survey , 2001 .

[82]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[83]  Tristan Cazenave,et al.  Metaprogramming Forced Moves , 1998, ECAI.

[84]  John Michael Robson,et al.  The Complexity of Go , 1983, IFIP Congress.

[85]  Selim G. Akl,et al.  The principal continuation and the killer heuristic , 1977, ACM '77.

[86]  P.H.G. van Langen,et al.  The Anatomy of Design: Foundations, Models and Applications , 2002 .

[87]  Stefan Manegold,et al.  Understanding, modeling, and improving main-memory database performance , 2002 .

[88]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[89]  Barak A. Pearlmutter Gradient calculations for dynamic recurrent neural networks: a survey , 1995, IEEE Trans. Neural Networks.

[90]  Ken Chen,et al.  Static Analysis of Life and Death in the Game of Go , 1999, Inf. Sci..

[91]  Jonathan Schaeffer,et al.  Experiments in Search and Knowledge , 1986, J. Int. Comput. Games Assoc..

[92]  Patrick van der Smagt,et al.  Introduction to neural networks , 1995, The Lancet.

[93]  D.E. Goldberg,et al.  Classifier Systems and Genetic Algorithms , 1989, Artif. Intell..

[94]  Jos W. H. M. Uiterwijk,et al.  Programming a computer to play and solve Ponnuki-Go , 2002 .

[95]  Kohji Fukunaga,et al.  Introduction to Statistical Pattern Recognition-Second Edition , 1990 .

[96]  Levente Kocsis Learning search decisions , 2003 .

[97]  Richard S. Sutton,et al.  Reinforcement Learning , 1992, Handbook of Machine Learning.

[98]  W.C.A. Wijngaards,et al.  Agent-Based Modelling of Dynamics: Biological and Organisational Applications , 2002 .

[99]  David Al-Dabass,et al.  Genetic Search Techniques for Line Play Generation in the Game of GO , 2003, GAME-ON.

[100]  Peter Boncz,et al.  UvA-DARE ( Digital Academic Repository ) Monet ; a next-Generation DBMS Kernel For Query-Intensive Applications , 2007 .

[101]  Nichael Lynn Cramer,et al.  A Representation for the Adaptive Generation of Simple Sequential Programs , 1985, ICGA.

[102]  Tristan Cazenave,et al.  When One Eye is Sufficient: A Static Classification , 2003, ACG.

[103]  Jacob Lenting Informed gambling : conception and analysis of a multi-agent mechanism for discrete reallocation , 1999 .

[104]  Albert L. Zobrist,et al.  A New Hashing Method with Application for Game Playing , 1990 .

[105]  Gerald Tesauro,et al.  Connectionist Learning of Expert Preferences by Comparison Training , 1988, NIPS.

[106]  Gerald Tesauro,et al.  Temporal Difference Learning and TD-Gammon , 1995, J. Int. Comput. Games Assoc..

[107]  Shaul Markovitch,et al.  Learning Models of Opponent's Strategy Game Playing , 1993 .

[108]  H Hongjing Wu,et al.  A reference architecture for adaptive hypermedia applications , 2002 .

[109]  Nir Oren,et al.  Evolving Neural Networks for the Capture Game , 2002 .

[110]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[111]  Rik Eshuis,et al.  Semantics and Verification of UML Activity Diagrams for Workflow Modelling , 2002 .

[112]  E. van der Werf AYA WINS 9 x 9 GO TOURNAMENT , 2003 .

[113]  H. Jaap van den Herik,et al.  Replacement Schemes and Two-Level Tables , 1996, J. Int. Comput. Games Assoc..

[114]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[115]  Jonathan Schaeffer The History Heuristic , 1983, J. Int. Comput. Games Assoc..

[116]  Dap Hartmann,et al.  Memory versus Search in Games , 1998, J. Int. Comput. Games Assoc..

[117]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[118]  Andrew Tridgell,et al.  TDLeaf(lambda): Combining Temporal Difference Learning with Game-Tree Search , 1999, ArXiv.

[119]  Tony Marsland,et al.  Multi-cut alpha-beta-pruning in game-tree search , 2001, Theor. Comput. Sci..

[120]  Hiroyuki Iida,et al.  The PN*-search algorithm: Application to tsume-shogi , 2001, Artif. Intell..

[121]  Jan Broersen Modal Action Logics for Reasoning about Reactive Systems , 2003 .

[122]  Risto Miikkulainen,et al.  Evolving Neural Networks to Focus Minimax Search , 1994, AAAI.

[123]  Eric O. Postma,et al.  Local Move Prediction in Go , 2002, Computers and Games.

[124]  F. Gers,et al.  Long short-term memory in recurrent neural networks , 2001 .

[125]  Hiroyuki Iida,et al.  Potential Applications of Opponent-Model Search , 1994, J. Int. Comput. Games Assoc..

[126]  Erkki Oja,et al.  A class of neural networks for independent component analysis , 1997, IEEE Trans. Neural Networks.

[127]  M. G. Jansen Formal explorations of knowledge intensive tasks , 2003 .

[128]  David G. Stork,et al.  Pattern Classification , 1973 .

[129]  X. Yao Evolving Artificial Neural Networks , 1999 .

[130]  I. Sprinkhuizen-Kuyper,et al.  EVOLVING IMPROVED OPPONENT INTELLIGENCE , 2002 .

[131]  L. V. Allis,et al.  Searching for solutions in games and artificial intelligence , 1994 .

[132]  H. Jaap van den Herik,et al.  Proof-Number Search , 1994, Artif. Intell..

[133]  A. PearlmutterB. Gradient calculations for dynamic recurrent neural networks , 1995 .

[134]  Keh-Hsun Chen Computer Go: Knowledge, Search, and Move Decision , 2001, J. Int. Comput. Games Assoc..

[135]  David J. Slate,et al.  Chess 4.5-The Northwestern University chess program , 1988 .

[136]  David B. Benson,et al.  Life in the game of Go , 1976 .

[137]  Tristan Cazenave Gradual Abstract Proof Search , 2002, J. Int. Comput. Games Assoc..

[138]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[139]  Robert Charles Bell,et al.  Board and table games from many civilizations , 1969 .

[140]  Jonathan Schaeffer,et al.  Exploiting Graph Properties of Game Trees , 1996, AAAI/IAAI, Vol. 1.

[141]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[142]  H. Jaap van den Herik,et al.  Solving Ponnuki-Go on Small Boards , 2002, GAME-ON.

[143]  van Boris Wessel Schooten,et al.  Development and Specification of Virtual Environments , 2003 .

[144]  Leemon C. Baird,et al.  Residual Algorithms: Reinforcement Learning with Function Approximation , 1995, ICML.

[145]  Thomas Wolf The program GoTools and its computer-generated tsume go database , 1994 .

[146]  Hans J. Berliner,et al.  The B* Tree Search Algorithm: A Best-First Proof Procedure , 1979, Artif. Intell..

[147]  R. V. D. Pol Knowledge-based query formulation in information retrieval , 2000 .

[148]  Teuvo Kohonen,et al.  In: Self-organising Maps , 1995 .

[149]  David Lichtenstein,et al.  GO Is Polynomial-Space Hard , 1980, JACM.

[150]  Keh-Hsun Chen Some Practical Techniques for Global Search in Go , 2000, J. Int. Comput. Games Assoc..

[151]  Juan Roberto Castelo Valdueza,et al.  The Discrete Acyclic Digraph Markov Model in Data Mining , 2002 .

[152]  Andrew W. Moore,et al.  Generalization in Reinforcement Learning: Safely Approximating the Value Function , 1994, NIPS.

[153]  Don J. Torrieri The eigenspace separation transform for neural-network classifiers , 1999, Neural Networks.

[154]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[155]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[156]  B. Bouzy Spatial Reasoning in the game of Go , 1996 .

[157]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[158]  Stephen B. Gray,et al.  Local Properties of Binary Images in Two Dimensions , 1971, IEEE Transactions on Computers.

[159]  Eric B. Baum,et al.  A Bayesian Approach to Relevance in Game Playing , 1997, Artif. Intell..

[160]  李幼升,et al.  Ph , 1989 .

[161]  Michael Buro Toward Opening Book Learning , 1999, J. Int. Comput. Games Assoc..

[162]  Christian Donninger,et al.  Null Move and Deep Search , 1993, J. Int. Comput. Games Assoc..

[163]  Donald C. Wunsch,et al.  TD methods applied to mixture of experts for learning 9/spl times/9 Go evaluation function , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[164]  Donald E. Knuth,et al.  The Solution for the Branching Factor of the Alpha-Beta Pruning Algorithm , 1981, ICALP.

[165]  B. Ingersoll-Dayton,et al.  Searching for solutions: mental health consultation in nursing homes , 1993 .

[166]  David Fotland Static Eye Analysis in "The Many Faces of Go" , 2002, J. Int. Comput. Games Assoc..

[167]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[168]  Stijn Hoppenbrouwers,et al.  Freezing language : conceptualisation processes across ICT-supported organisations , 2003 .

[169]  Bruno Bouzy,et al.  Computer Go: An AI oriented survey , 2001, Artif. Intell..

[170]  Tony Marsland,et al.  Selective depth-first game-tree search , 2002 .

[171]  Martin Müller,et al.  Computer Go , 2002, Artif. Intell..

[172]  Jos W. H. M. Uiterwijk,et al.  Temporal Difference Learning and the Neural MoveMap Heuristic in the Game of Lines of Action , 2002 .

[173]  A. G. Arkad'ev,et al.  Computers and pattern recognition , 1967 .

[174]  A. L. Samuel,et al.  Some studies in machine learning using the game of checkers. II: recent progress , 1967 .

[175]  Jonathan Baxter,et al.  TDLeaf ( ) : Combining Temporal Difference Learning with Game-Tree Search , 1998 .

[176]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[177]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[178]  Jaap van den Herik,et al.  Visual learning in Go , 2001 .

[179]  John N. Tsitsiklis,et al.  Analysis of temporal-difference learning with function approximation , 1996, NIPS 1996.

[180]  Murray Campbell,et al.  The graph-history interaction: on ignoring position history , 1985, ACM '85.

[181]  T. A. Marsland,et al.  A Review of Game-Tree Pruning , 1986, J. Int. Comput. Games Assoc..