Efficient Visibility Encoding for Dynamic Illumination in Direct Volume Rendering

We present an algorithm that enables real-time dynamic shading in direct volume rendering using general lighting, including directional lights, point lights, and environment maps. Real-time performance is achieved by encoding local and global volumetric visibility using spherical harmonic (SH) basis functions stored in an efficient multiresolution grid over the extent of the volume. Our method enables high-frequency shadows in the spatial domain, but is limited to a low-frequency approximation of visibility and illumination in the angular domain. In a first pass, level of detail (LOD) selection in the grid is based on the current transfer function setting. This enables rapid online computation and SH projection of the local spherical distribution of visibility information. Using a piecewise integration of the SH coefficients over the local regions, the global visibility within the volume is then computed. By representing the light sources using their SH projections, the integral over lighting, visibility, and isotropic phase functions can be efficiently computed during rendering. The utility of our method is demonstrated in several examples showing the generality and interactive performance of the approach.

[1]  Gerald L. Engel,et al.  VISUALIZATION AND COMPUTER GRAPHICS , 2005 .

[2]  Jeremy Birn,et al.  Digital Lighting and Rendering , 2006 .

[3]  Klaus Mueller,et al.  Lattice-Based Volumetric Global Illumination , 2007, IEEE Transactions on Visualization and Computer Graphics.

[4]  Anders Ynnerman,et al.  Efficient Ambient and Emissive Tissue Illumination using Local Occlusion in Multiresolution Volume Rendering , 2007, VG@Eurographics.

[5]  Xing Mei,et al.  Fast Hydraulic Erosion Simulation and Visualization on GPU , 2007 .

[6]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[7]  David C. Banks,et al.  Pre-computed illumination for isosurfaces , 2006, Electronic Imaging.

[8]  Amitabh Varshney,et al.  Light Collages: lighting design for effective visualization , 2004, IEEE Visualization 2004.

[9]  Kun Zhou,et al.  Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation , 2006, ACM Trans. Graph..

[10]  Timo Ropinski,et al.  Advanced Light Material Interaction for Direct Volume Rendering , 2010, VG@Eurographics.

[11]  Eugene Fiume,et al.  SOHO: Orthogonal and symmetric Haar wavelets on the sphere , 2008, TOGS.

[12]  Ian G. Lisle,et al.  Algorithms for spherical harmonic lighting , 2007, GRAPHITE '07.

[13]  Timo Ropinski,et al.  Interactive Volume Rendering with Dynamic Ambient Occlusion and Color Bleeding , 2008, Comput. Graph. Forum.

[14]  Peter-Pike J. Sloan,et al.  Clustered principal components for precomputed radiance transfer , 2003, ACM Trans. Graph..

[15]  Markus Hadwiger,et al.  GPU-accelerated deep shadow maps for direct volume rendering , 2006, GH '06.

[16]  Kun Zhou,et al.  Interactive relighting with dynamic BRDFs , 2007, SIGGRAPH 2007.

[17]  Timo Ropinski,et al.  Interactive volumetric lighting simulating scattering and shadowing , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[18]  H. Shum,et al.  Real-time smoke rendering using compensated ray marching , 2008, ACM Trans. Graph..

[19]  Charles D. Hansen,et al.  Interactive display of isosurfaces with global illumination , 2006, IEEE Transactions on Visualization and Computer Graphics.

[20]  Patric Ljung,et al.  Adaptive Sampling in Single Pass, GPU-based Raycasting of Multiresolution Volumes , 2006, VG@SIGGRAPH.

[21]  Anders Ynnerman,et al.  Local Ambient Occlusion in Direct Volume Rendering , 2010, IEEE Transactions on Visualization and Computer Graphics.

[22]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[23]  Joe Michael Kniss,et al.  A Model for Volume Lighting and Modeling , 2003, IEEE Trans. Vis. Comput. Graph..

[24]  Markus Hadwiger,et al.  Real-time volume graphics , 2006, Eurographics.

[25]  Anders Ynnerman,et al.  Transfer function based adaptive decompression for volume rendering of large medical data sets , 2004, 2004 IEEE Symposium on Volume Visualization and Graphics.

[26]  Mathias Schott,et al.  A Directional Occlusion Shading Model for Interactive Direct Volume Rendering , 2009, Comput. Graph. Forum.

[27]  Anders Ynnerman,et al.  HDR light probe sequence resampling for realtime incident light field rendering , 2009, SCCG.

[28]  Hans-Peter Seidel,et al.  Predicting visible differences in high dynamic range images: model and its calibration , 2005, IS&T/SPIE Electronic Imaging.

[29]  Steve Marschner,et al.  Efficient multiple scattering in hair using spherical harmonics , 2008, ACM Trans. Graph..

[30]  Tobias Ritschel Fast GPU-based Visibility Computation for Natural Illumination of Volume Data Sets , 2007, Eurographics.

[31]  Tom Lokovic,et al.  Deep shadow maps , 2000, SIGGRAPH.

[32]  Anders Ynnerman,et al.  Interactive Global Light Propagation in Direct Volume Rendering using Local Piecewise Integration , 2008, VG/PBG@SIGGRAPH.

[33]  Christof Rezk Salama,et al.  GPU-Based Monte-Carlo Volume Raycasting , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[34]  H. Bülthoff,et al.  Depth Discrimination from Shading under Diffuse Lighting , 2000, Perception.

[35]  Frédo Durand,et al.  A precomputed polynomial representation for interactive BRDF editing with global illumination , 2008, TOGS.

[36]  Timo Ropinski,et al.  Advanced illumination techniques for GPU-based volume raycasting , 2008, SIGGRAPH 2008.

[37]  Ralf Ratering,et al.  Adding Shadows to a Texture-Based Volume Renderer , 1998, VVS.