Omics and Clinical Data Integration

[1]  Giancarlo Mauri,et al.  Zooming-in on cancer metabolic rewiring with tissue specific constraint-based models , 2016, Comput. Biol. Chem..

[2]  Christina Backes,et al.  Multi-omics enrichment analysis using the GeneTrail2 web service , 2016, Bioinform..

[3]  T. Ideker,et al.  Translation of Genotype to Phenotype by a Hierarchy of Cell Subsystems , 2016, Cell systems.

[4]  Luciano Milanesi,et al.  Methods for the integration of multi-omics data: mathematical aspects , 2016, BMC Bioinformatics.

[5]  James T. Robinson,et al.  Integrative genomic analysis by interoperation of bioinformatics tools in GenomeSpace , 2015, Nature Methods.

[6]  H. Lehrach,et al.  Multi-omic profiles of human non-alcoholic fatty liver disease tissue highlight heterogenic phenotypes , 2015, Scientific Data.

[7]  H. Lehrach,et al.  Predictive Modeling of Drug Treatment in the Area of Personalized Medicine , 2015, Cancer informatics.

[8]  I. Jurisica,et al.  Fundamentals of protein interaction network mapping , 2015, Molecular systems biology.

[9]  Daniel C. Zielinski,et al.  Personalized Whole-Cell Kinetic Models of Metabolism for Discovery in Genomics and Pharmacodynamics. , 2015, Cell systems.

[10]  N. Socci,et al.  Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity , 2015, Nature Biotechnology.

[11]  H. Gowda,et al.  Metabolomics and its integration with systems biology: PSI 2014 conference panel discussion report. , 2015, Journal of proteomics.

[12]  Hans V Westerhoff,et al.  Network-based pharmacology through systems biology. , 2015, Drug discovery today. Technologies.

[13]  Hans Lehrach,et al.  Network and systems biology: essential steps in virtualising drug discovery and development. , 2015, Drug discovery today. Technologies.

[14]  Edward J. O'Brien,et al.  Computing the functional proteome: recent progress and future prospects for genome-scale models. , 2015, Current opinion in biotechnology.

[15]  Gary D Bader,et al.  Pathway and network analysis of cancer genomes , 2015, Nature Methods.

[16]  Eytan Ruppin,et al.  Modeling cancer metabolism on a genome scale , 2015, Molecular systems biology.

[17]  Edward J. O'Brien,et al.  Using Genome-scale Models to Predict Biological Capabilities , 2015, Cell.

[18]  T. Ideker,et al.  The cancer cell map initiative: defining the hallmark networks of cancer. , 2015, Molecular cell.

[19]  Intawat Nookaew,et al.  Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes. , 2015, Cell reports.

[20]  F. Schreiber,et al.  Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation. , 2015, Genomics.

[21]  Gerald Penkler,et al.  Construction and validation of a detailed kinetic model of glycolysis in Plasmodium falciparum , 2015, The FEBS journal.

[22]  Zoran Nikoloski,et al.  Integration of metabolomics data into metabolic networks , 2015, Front. Plant Sci..

[23]  Nuno Nunes,et al.  PathVisio 3: An Extendable Pathway Analysis Toolbox , 2015, PLoS Comput. Biol..

[24]  Ales Belic,et al.  SteatoNet: The First Integrated Human Metabolic Model with Multi-layered Regulation to Investigate Liver-Associated Pathologies , 2014, PLoS Comput. Biol..

[25]  Marco S. Nobile,et al.  Computational Strategies for a System-Level Understanding of Metabolism , 2014, Metabolites.

[26]  Pablo Villoslada,et al.  Modules, networks and systems medicine for understanding disease and aiding diagnosis , 2014, Genome Medicine.

[27]  C. Maranas,et al.  Recent advances in the reconstruction of metabolic models and integration of omics data. , 2014, Current opinion in biotechnology.

[28]  L. Alberghina,et al.  An ensemble evolutionary constraint-based approach to understand the emergence of metabolic phenotypes , 2014, Natural Computing.

[29]  Jeffrey R. Whiteaker,et al.  Proteogenomic characterization of human colon and rectal cancer , 2014, Nature.

[30]  Alan G Hinnebusch,et al.  The scanning mechanism of eukaryotic translation initiation. , 2014, Annual review of biochemistry.

[31]  L. Alberghina,et al.  A systems biology road map for the discovery of drugs targeting cancer cell metabolism. , 2014, Current pharmaceutical design.

[32]  David Gomez-Cabrero,et al.  Data integration in the era of omics: current and future challenges , 2014, BMC Systems Biology.

[33]  J. Nielsen,et al.  Identification of anticancer drugs for hepatocellular carcinoma through personalized genome‐scale metabolic modeling , 2014, Molecular systems biology.

[34]  Zachary A. King,et al.  Constraint-based models predict metabolic and associated cellular functions , 2014, Nature Reviews Genetics.

[35]  M. Uhlén,et al.  Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease , 2014, Nature Communications.

[36]  Doron Lancet,et al.  MOPED enables discoveries through consistently processed proteomics data. , 2014, Journal of proteome research.

[37]  Rafael C. Jimenez,et al.  The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases , 2013, Nucleic Acids Res..

[38]  Mehdi Mesri,et al.  Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium. , 2013, Cancer discovery.

[39]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[40]  B. Stefanovic RNA protein interactions governing expression of the most abundant protein in human body, type I collagen , 2013, Wiley interdisciplinary reviews. RNA.

[41]  Angel Rubio,et al.  Joint analysis of miRNA and mRNA expression data , 2013, Briefings Bioinform..

[42]  I. Nookaew,et al.  Integration of clinical data with a genome-scale metabolic model of the human adipocyte , 2013, Molecular systems biology.

[43]  Ronan M. T. Fleming,et al.  A community-driven global reconstruction of human metabolism , 2013, Nature Biotechnology.

[44]  Yuanhua Liu,et al.  Multilevel omic data integration in cancer cell lines: advanced annotation and emergent properties , 2013, BMC Systems Biology.

[45]  Nathan E Lewis,et al.  Analysis of omics data with genome-scale models of metabolism. , 2013, Molecular bioSystems.

[46]  F. Gebauer,et al.  Translational control by 3′-UTR-binding proteins , 2012, Briefings in functional genomics.

[47]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[48]  Sarah R. Langley,et al.  Proteomics: from single molecules to biological pathways , 2012, Cardiovascular research.

[49]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[50]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[51]  E. Ruppin,et al.  Predicting Drug Targets and Biomarkers of Cancer via Genome-Scale Metabolic Modeling , 2012, Clinical Cancer Research.

[52]  J. Pritchard,et al.  Genomics: ENCODE explained , 2012, Nature.

[53]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[54]  Liang Liu,et al.  Network-based drug discovery by integrating systems biology and computational technologies , 2012, Briefings Bioinform..

[55]  Jason A. Papin,et al.  Integration of expression data in genome-scale metabolic network reconstructions , 2012, Front. Physio..

[56]  Leroy Hood,et al.  Systems Approaches to Biology and Disease Enable Translational Systems Medicine , 2012, Genom. Proteom. Bioinform..

[57]  Rudi Balling,et al.  Revolutionizing medicine in the 21st century through systems approaches. , 2012, Biotechnology journal.

[58]  Charles Auffray,et al.  Editorial: Systems biology and personalized medicine – the future is now , 2012, Biotechnology journal.

[59]  Enrico Blanzieri,et al.  Widespread uncoupling between transcriptome and translatome variations after a stimulus in mammalian cells , 2012, BMC Genomics.

[60]  Natapol Pornputtapong,et al.  Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT , 2012, PLoS Comput. Biol..

[61]  G. Hortobagyi Toward individualized breast cancer therapy: translating biological concepts to the bedside. , 2012, The oncologist.

[62]  Ghislain Bidaut,et al.  Interactome-transcriptome integration for predicting distant metastasis in breast cancer , 2012, Bioinform..

[63]  B. Palsson,et al.  Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods , 2012, Nature Reviews Microbiology.

[64]  L. Hood,et al.  Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine , 2012, Journal of internal medicine.

[65]  M. Imieliński,et al.  Integrated Proteomic, Transcriptomic, and Biological Network Analysis of Breast Carcinoma Reveals Molecular Features of Tumorigenesis and Clinical Relapse* , 2012, Molecular & Cellular Proteomics.

[66]  Doron Lancet,et al.  MOPED: Model Organism Protein Expression Database , 2011, Nucleic Acids Res..

[67]  Livia Perfetto,et al.  MINT, the molecular interaction database: 2012 update , 2011, Nucleic Acids Res..

[68]  Karmen K. Yoder,et al.  Amyloid pathway-based candidate gene analysis of [11C]PiB-PET in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort , 2011, Brain Imaging and Behavior.

[69]  Jiali Han,et al.  Pathway Analysis for Genome-Wide Association Study of Basal Cell Carcinoma of the Skin , 2011, PloS one.

[70]  Brian J. Bennett,et al.  Comparative Analysis of Proteome and Transcriptome Variation in Mouse , 2011, PLoS genetics.

[71]  Peer Bork,et al.  iPath2.0: interactive pathway explorer , 2011, Nucleic Acids Res..

[72]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[73]  Raymond K. Auerbach,et al.  A User's Guide to the Encyclopedia of DNA Elements (ENCODE) , 2011, PLoS biology.

[74]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[75]  Roded Sharan,et al.  Genome-Scale Metabolic Modeling Elucidates the Role of Proliferative Adaptation in Causing the Warburg Effect , 2011, PLoS Comput. Biol..

[76]  E. Yeung Genome-wide correlation between mRNA and protein in a single cell. , 2011, Angewandte Chemie.

[77]  E. Lundberg,et al.  Towards a knowledge-based Human Protein Atlas , 2010, Nature Biotechnology.

[78]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[79]  O. Reséndis-Antonio,et al.  Modeling Core Metabolism in Cancer Cells: Surveying the Topology Underlying the Warburg Effect , 2010, PloS one.

[80]  Li Shen,et al.  Genetic pathway‐based hierarchical clustering analysis of older adults with cognitive complaints and amnestic mild cognitive impairment using clinical and neuroimaging phenotypes , 2010, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[81]  B. Mayer,et al.  Linking transcriptomic and proteomic data on the level of protein interaction networks , 2010, Electrophoresis.

[82]  Peter Kraft,et al.  Pathway analysis of breast cancer genome-wide association study highlights three pathways and one canonical signaling cascade. , 2010, Cancer research.

[83]  Eytan Ruppin,et al.  Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model , 2010, Bioinform..

[84]  Yuri Nikolsky,et al.  Integrated network analysis of transcriptomic and proteomic data in psoriasis , 2010, BMC Systems Biology.

[85]  Gary D Bader,et al.  International network of cancer genome projects , 2010, Nature.

[86]  Matthew A. Hibbs,et al.  Visualization of omics data for systems biology , 2010, Nature Methods.

[87]  Tom Royce,et al.  A comprehensive catalogue of somatic mutations from a human cancer genome , 2010, Nature.

[88]  K. Lange,et al.  Prioritizing GWAS results: A review of statistical methods and recommendations for their application. , 2010, American journal of human genetics.

[89]  Alexei Vazquez,et al.  Optimal cytoplasmatic density and flux balance model under macromolecular crowding effects. , 2009, Journal of theoretical biology.

[90]  C. Wijmenga,et al.  Using genome‐wide pathway analysis to unravel the etiology of complex diseases , 2009, Genetic epidemiology.

[91]  Curtis Balch,et al.  MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression , 2009, Nucleic Acids Res..

[92]  Ralf Hofestädt,et al.  Predicting metabolic biomarkers of human inborn errors of metabolism , 2009, Molecular systems biology.

[93]  Qunfeng Dong,et al.  ESTPiper – a web-based analysis pipeline for expressed sequence tags , 2009, BMC Genomics.

[94]  Carlos Prieto,et al.  Human Gene Coexpression Landscape: Confident Network Derived from Tissue Transcriptomic Profiles , 2008, PloS one.

[95]  Georgios A. Pavlopoulos,et al.  Arena3D: visualization of biological networks in 3D , 2008, BMC Systems Biology.

[96]  David S. Wishart,et al.  HMDB: a knowledgebase for the human metabolome , 2008, Nucleic Acids Res..

[97]  Gianluca Bontempi,et al.  Biological Processes Associated with Breast Cancer Clinical Outcome Depend on the Molecular Subtypes , 2008, Clinical Cancer Research.

[98]  N. Kikuchi,et al.  CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks , 2008, Proceedings of the IEEE.

[99]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.

[100]  S. Dongen,et al.  Construction, Visualisation, and Clustering of Transcription Networks from Microarray Expression Data , 2007, PLoS Comput. Biol..

[101]  Matthew Suderman,et al.  Tools for visually exploring biological networks , 2007, Bioinform..

[102]  Neema Jamshidi,et al.  A genome-scale, constraint-based approach to systems biology of human metabolism. , 2007, Molecular bioSystems.

[103]  Yu Zhang,et al.  Inferring Gene Regulatory Networks from Multiple Data Sources Via a Dynamic Bayesian Network with Structural EM , 2007, DILS.

[104]  Hongzhe Li,et al.  A Markov random field model for network-based analysis of genomic data , 2007, Bioinform..

[105]  H. Kitano A robustness-based approach to systems-oriented drug design , 2007, Nature Reviews Drug Discovery.

[106]  Ying Zhang,et al.  HMDB: the Human Metabolome Database , 2007, Nucleic Acids Res..

[107]  Jingchun Chen,et al.  Detecting functional modules in the yeast protein-protein interaction network , 2006, Bioinform..

[108]  Falk Schreiber,et al.  VANTED: A system for advanced data analysis and visualization in the context of biological networks , 2006, BMC Bioinformatics.

[109]  F. Bruggeman,et al.  Cancer: a Systems Biology disease. , 2006, Bio Systems.

[110]  J. Mesirov,et al.  From the Cover: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005 .

[111]  P. Park,et al.  Discovering statistically significant pathways in expression profiling studies. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[112]  Andre Skusa,et al.  Extraction of biological interaction networks from scientific literature , 2005, Briefings Bioinform..

[113]  O. Engebraaten,et al.  The challenges in translating present knowledge of the molecular biology of breast cancer into clinical use , 2005, Breast Cancer Research.

[114]  J. Nielsen,et al.  Uncovering transcriptional regulation of metabolism by using metabolic network topology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[115]  J. Foekens,et al.  Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer , 2005, The Lancet.

[116]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[117]  M. Stratton,et al.  The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website , 2004, British Journal of Cancer.

[118]  H. Kitano Cancer as a robust system: implications for anticancer therapy , 2004, Nature Reviews Cancer.

[119]  S. Rhee,et al.  MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. , 2004, The Plant journal : for cell and molecular biology.

[120]  Ron Shamir,et al.  PIVOT: Protein Interacions VisualizatiOn Tool , 2004, Bioinform..

[121]  Ferdinando Palmieri,et al.  The mitochondrial transporter family (SLC25): physiological and pathological implications , 2004, Pflügers Archiv.

[122]  Satoru Miyano,et al.  Using Protein-Protein Interactions for Refining Gene Networks Estimated from Microarray Data by Bayesian Networks , 2003, Pacific Symposium on Biocomputing.

[123]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[124]  M. Tyers,et al.  Osprey: a network visualization system , 2003, Genome Biology.

[125]  Van,et al.  A gene-expression signature as a predictor of survival in breast cancer. , 2002, The New England journal of medicine.

[126]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[127]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[128]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[129]  B. Snel,et al.  STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. , 2000, Nucleic acids research.

[130]  Barbara M. Bakker,et al.  Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. , 2000, European journal of biochemistry.

[131]  U. Bhalla,et al.  Emergent properties of networks of biological signaling pathways. , 1999, Science.

[132]  A. Sheth Federated database systems for managing distributed, heterogeneous, and autonomous databases , 1990, ACM Comput. Surv..

[133]  Kara Dolinski,et al.  Use of the BioGRID Database for Analysis of Yeast Protein and Genetic Interactions. , 2016, Cold Spring Harbor protocols.

[134]  M. Nishizawa,et al.  Regulation of inducible gene expression by natural antisense transcripts. , 2012, Frontiers in bioscience.

[135]  A. Mally,et al.  Integrated transcriptomic and proteomic evaluation of gentamicin nephrotoxicity in rats. , 2012, Toxicology and applied pharmacology.

[136]  H Tanaka,et al.  Omics-based Medicine and Systems Pathology , 2010, Methods of Information in Medicine.

[137]  N. Gulbahce,et al.  Network medicine: a network-based approach to human disease , 2010, Nature Reviews Genetics.

[138]  Suzanne M. Paley,et al.  Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology , 2010, Briefings Bioinform..

[139]  H Kitano,et al.  The theory of biological robustness and its implication in cancer. , 2007, Ernst Schering Research Foundation workshop.

[140]  R. Karp,et al.  From the Cover : Conserved patterns of protein interaction in multiple species , 2005 .

[141]  David Auber,et al.  Tulip - A Huge Graph Visualization Framework , 2004, Graph Drawing Software.

[142]  Christopher J. Rawlings,et al.  Linking experimental results, biological networks and sequence analysis methods using Ontologies and Generalized Data Structures , 2004, Silico Biol..

[143]  E. Lander,et al.  A molecular signature of metastasis in primary solid tumors , 2003, Nature Genetics.

[144]  Philip Lijnzaad,et al.  The Ensembl genome database project , 2002, Nucleic Acids Res..

[145]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[146]  J. Venter,et al.  E-CELL: software environment for whole-cell simulation , 1999, Bioinform..

[147]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[148]  Holger Karas,et al.  TRANSFAC: a database on transcription factors and their DNA binding sites , 1996, Nucleic Acids Res..

[149]  R. Pal,et al.  Send Orders of Reprints at Reprints@benthamscience.net Integrated Analysis of Transcriptomic and Proteomic Data , 2022 .

[150]  Andre Skusa,et al.  Rothamsted Repository Download , 2022 .

[151]  H. Lehrach,et al.  Uva-dare (digital Academic Repository) a Systems Biology Approach to Deciphering the Etiology of Steatosis Employing Patient-derived Dermal Fibroblasts and Ips Cells , 2022 .

[152]  Stefan P. Albaum,et al.  Open Access Bmc Systems Biology Visualizing Post Genomics Data-sets on Customized Pathway Maps by Prometra – Aeration-dependent Gene Expression and Metabolism of Corynebacterium Glutamicum as an Example , 2022 .