A side-sensitive synthetic chart combined with an X chart

The synthetic chart combined with an chart (Synthetic- chart) signals when a sample point falls beyond the control limits or when a second point, not far from the first one, falls beyond the warning limits, no matter whether one of them falls above the centreline and the other falls below. The side-sensitive Synthetic- chart (SS Synthetic- chart) does not signal when the points beyond the warning limits are on opposite sides of the centreline. In this article, we show that the performance of the Synthetic- chart improves when it is side-sensitive; depending on the magnitude of the shift, the chart signals 30% faster.

[1]  Zhang Wu,et al.  A combined synthetic and np scheme for detecting increases in fraction nonconforming , 2012, Comput. Ind. Eng..

[2]  H.-J. Huang,et al.  A synthetic control chart for monitoring process dispersion with sample range , 2005 .

[3]  Di Wen,et al.  A comparison study on effectiveness and robustness of control charts for monitoring process mean and variance , 2012, Qual. Reliab. Eng. Int..

[4]  Antonio Fernando Branco Costa,et al.  The synthetic control chart based on two sample variances for monitoring the covariance matrix , 2009, Qual. Reliab. Eng. Int..

[5]  R. N. Rattihalli,et al.  A Side Sensitive Group Runs Control Chart for Detecting Shifts in the Process Mean , 2007, Stat. Methods Appl..

[6]  Trevor A Spedding,et al.  A Synthetic Control Chart for Detecting Fraction Nonconforming Increases , 2001 .

[7]  D. T. Shirke,et al.  Nonparametric Synthetic Control Charts for Process Variation , 2012, Qual. Reliab. Eng. Int..

[8]  S. A. Lesany,et al.  Recognition and classification of single and concurrent unnatural patterns in control charts via neural networks and fitted line of samples , 2014 .

[9]  Jianbo Yu,et al.  Gaussian mixture models-based control chart pattern recognition , 2012 .

[10]  D. T. Shirke,et al.  A Nonparametric Shewhart-Type Synthetic Control Chart , 2010, Commun. Stat. Simul. Comput..

[11]  Arthur B. Yeh,et al.  The density control chart: a general approach for constructing a single chart for simultaneously monitoring multiple parameters , 2012 .

[12]  H. J. Huang,et al.  A synthetic control chart for monitoring process dispersion with sample standard deviation , 2005, Comput. Ind. Eng..

[13]  Eugenio K. Epprecht,et al.  Monitoring the process mean and variance using a synthetic control chart with two-stage testing , 2009 .

[14]  Wei Jiang,et al.  A self-starting control chart for high-dimensional short-run processes , 2014 .

[15]  Philippe Castagliola,et al.  A combined synthetic&X chart for monitoring the process mean , 2010 .

[16]  Philippe Castagliola,et al.  A synthetic double sampling control chart for the process mean , 2010 .

[17]  Francisco Aparisi,et al.  The Design and Performance of the Multivariate Synthetic-T 2 Control Chart , 2009 .

[18]  D. T. Shirke,et al.  A Nonparametric Synthetic Control Chart Using Sign Statistic , 2010 .

[19]  M. D. Martínez-Miranda,et al.  Computational Statistics and Data Analysis , 2009 .

[20]  Zhang Wu,et al.  Optimal average sample number of the SPRT chart for monitoring fraction nonconforming , 2013, Eur. J. Oper. Res..

[21]  Zhang Wu,et al.  A Multivariate Synthetic Control Chart for Monitoring the Process Mean Vector of Skewed Populations Using Weighted Standard Deviations , 2009, Commun. Stat. Simul. Comput..

[22]  Philippe Castagliola,et al.  Optimal design of the synthetic chart for the process mean based on median run length , 2012 .

[23]  Philippe Castagliola,et al.  A Synthetic Scaled Weighted Variance Control Chart for Monitoring the Process Mean of Skewed Populations , 2009, Commun. Stat. Simul. Comput..

[24]  Patrick D. Bourke,et al.  Performance Comparisons for the Synthetic Control Chart for Detecting Increases in Fraction Nonconforming , 2008 .

[25]  Antonio F. B. Costa,et al.  Some Comments Regarding the Synthetic Chart , 2014 .

[26]  Maysa S. de Magalhães,et al.  Double-sampling control charts for attributes , 2011 .

[27]  Seoung Bum Kim,et al.  A clustering algorithm-based control chart for inhomogeneously distributed TFT-LCD processes , 2013 .

[28]  Mei Yang,et al.  Optimization designs of the combined Shewhart-CUSUM control charts , 2008, Comput. Stat. Data Anal..

[29]  F. Aparisi,et al.  The variable sample size variable dimension T2 control chart , 2014 .

[30]  Zhang Wu,et al.  A control chart for monitoring process mean based on attribute inspection , 2008 .

[31]  D. T. Shirke,et al.  A Multivariate Synthetic Control Chart for Monitoring Process Mean Vector , 2008 .

[32]  Trevor A Spedding,et al.  A Synthetic Control Chart for Detecting Small Shifts in the Process Mean , 2000 .

[33]  William H. Woodall,et al.  Evaluating and Improving the Synthetic Control Chart , 2002 .

[34]  D. Hey,et al.  Design of double-and triple-sampling X-bar control charts using genetic algorithms , 2002 .

[35]  Philippe Castagliola,et al.  The synthetic [Xbar] chart with estimated parameters , 2011 .