Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths
暂无分享,去创建一个
Henrik Mosegaard | M. Cardinale | P. Doering-Arjes | M. Kastowsky | H. Mosegaard | M. Cardinale | P. Doering-Arjes | M. Kastowsky
[1] William H. Press,et al. Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .
[2] W. Overholtz,et al. The use of internal otolith morphometrics for identification of haddock (Melanogrammus aeglefinus) stocks on Georges Bank , 2001 .
[3] P. Wintz,et al. An efficient three-dimensional aircraft recognition algorithm using normalized fourier descriptors , 1980 .
[4] Daniel K. Kimura,et al. Between-Reader Bias and Variability in the Age-Determination Process , 1991 .
[5] D. Nelson,et al. Otolith growth in fishes , 1990 .
[6] M. Heel,et al. Single-particle electron cryo-microscopy: towards atomic resolution , 2000, Quarterly Reviews of Biophysics.
[7] S. Campana,et al. Microstructure of Fish Otoliths , 1985 .
[8] Gavin A. Begg,et al. An holistic approach to fish stock identification , 1999 .
[9] A. Lombarte,et al. Otolith size changes related with body growth, habitat depth and temperature , 1993, Environmental Biology of Fishes.
[10] K. Friedland,et al. Use of Otolith Morphology in Stock Discriminations of Atlantic Salmon (Salmo salar) , 1994 .
[11] R. Gauldie. A measure of metabolism in fish otoliths , 1990 .
[12] J. H. L'abée-Lund. Otolith shape discriminates between juvenile Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L. , 1988 .
[13] William H. Press,et al. Numerical recipes in C. The art of scientific computing , 1987 .
[14] H. Svedäng,et al. Uncoupling of Somatic and Otolith Growth Rates in Arctic Char (Salvelinus alpinus) as an Effect of Differences in Temperature Response , 1988 .
[15] M. Cardinale,et al. Potential use of otolith weight for the determination of age-structure of Baltic cod (Gadus morhua) and plaice (Pleuronectes platessa) , 2000 .
[16] J. Francis. Statistica for Windows , 1995 .
[17] S. Campana. Chemistry and composition of fish otoliths : pathways, mechanisms and applications , 1999 .
[18] S. Campana,et al. Stock Discrimination Using Otolith Shape Analysis , 1993 .
[19] M van Heel,et al. A new generation of the IMAGIC image processing system. , 1996, Journal of structural biology.
[20] M. Smith. Regional Differences in Otolith Morphology of the Deep Slope Red Snapper Etelis carbunculus , 1992 .
[21] Pierre Gagnon,et al. Usefulness of Fourier Analysis of Otolith Shape for Atlantic Mackerel (Scomber scombrus) Stock Discrimination , 1991 .
[22] W. E. Ricker,et al. Changes in the Average Size and Average Age of Pacific Salmon , 1981 .
[23] S. Shapiro,et al. A Comparative Study of Various Tests for Normality , 1968 .
[24] J. Casselman,et al. Lake Whitefish (Coregonus clupeaformis) Stocks of the Ontario Waters of Lake Huron , 1981 .
[25] G. Begg,et al. Stock Identification of Haddock Melanogrammus aeglefinus on Georges Bank Based on Otolith Shape Analysis , 2000 .
[26] T. Perneger. What's wrong with Bonferroni adjustments , 1998, BMJ.
[27] J. Casselman,et al. Determining the effect of negative allometry (length/height relationship) on variation in otolith shape in lake trout (Salvelinus namaycush), using Fourier-series analysis , 2000 .
[28] D. Checkley,et al. Comparisons of herring otoliths using Fourier series shape analysis , 1986 .
[29] K. Becker,et al. An improved procedure to assess fish condition on the basis of length-weight relationships , 2000 .
[30] G. Zack,et al. Automatic measurement of sister chromatid exchange frequency. , 1977, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.