Solving Geometric Optimization Problems using Graphics Hardware
暂无分享,去创建一个
[1] Micha Sharir,et al. Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams , 2016, Discret. Comput. Geom..
[2] Franz Aurenhammer,et al. Voronoi Diagrams , 2000, Handbook of Computational Geometry.
[3] Dinesh Manocha,et al. Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.
[4] Alok Aggarwal,et al. Minimum area circumscribing Polygons , 2005, The Visual Computer.
[5] Emo Welzl,et al. Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.
[6] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[7] Nimrod Megiddo,et al. Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[8] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[9] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..
[10] Elmar Schömer,et al. Subquadratic algorithms for the weighted maximin facility location problem , 1995, CCCG.
[11] Herbert Freeman,et al. Determining the minimum-area encasing rectangle for an arbitrary closed curve , 1975, CACM.
[12] Sivan Toledo,et al. Extremal polygon containment problems , 1991, SCG '91.
[13] Jean-Daniel Boissonnat,et al. Polygon Placement Under Translation and Rotation , 1988, RAIRO Theor. Informatics Appl..
[14] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[15] Raimund Seidel,et al. Maximizing a Voronoi Region: the Convex Case , 2002, Int. J. Comput. Geom. Appl..
[16] N. Megiddo. Linear-time algorithms for linear programming in R3 and related problems , 1982, FOCS 1982.
[17] Cass W. Everitt,et al. Interactive Order-Independent Transparency , 2001 .
[18] Steven Fortune. A Fast Algorithm for Polygon Containment by Translation (Extended Abstract) , 1985, ICALP.
[19] Jirí Matousek,et al. The one-round Voronoi game , 2002, SCG '02.
[20] Nimrod Megiddo,et al. Linear-Time Algorithms for Linear Programming in R^3 and Related Problems , 1982, FOCS.
[21] Christian Schwarz,et al. On Nding a Minimal Enclosing Parallelogram , 1994 .
[22] Micha Sharir,et al. Computing the Smallest K-enclosing Circle and Related Problems , 1993, Comput. Geom..
[23] David Eppstein. Beta-skeletons have unbounded dilation , 2002, Comput. Geom..
[24] Bernd Gärtner,et al. Exact primitives for smallest enclosing ellipses , 1997, SCG '97.
[25] D. T. Lee,et al. Geometric complexity of some location problems , 1986, Algorithmica.
[26] Markus Oswald Denny,et al. Algorithmic geometry via graphics hardware , 2003 .
[27] Hermann A. Maurer,et al. New Results and New Trends in Computer Science , 1991, Lecture Notes in Computer Science.
[28] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.