Solving Geometric Optimization Problems using Graphics Hardware

We show how to use graphics hardware for tackling optimization problems arising in the field of computationalgeometry. We exemplarily discuss three problems, where combinatorial algorithms are inefficient or hard to implement.Given a set S of n point in the plane, the first two problems are to determine the smallest homotheticscaling of a star shaped polygon P enclosing S and to find the largest empty homothetic scaling of P completelycontained inside an arbitrary polygonal region. Pixel‐exact solutions for both problems are computed in real‐time.The third problem is a facility location problem and more difficult to solve. Given the Voronoi diagram VoD(S) ofthe n points, we try to position another point p in the plane, such that the resulting Voronoi region of p has maximalarea. As far as we know there exists no traditional solution for this problem for which we present pixel‐exactsolutions.

[1]  Micha Sharir,et al.  Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams , 2016, Discret. Comput. Geom..

[2]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.

[3]  Dinesh Manocha,et al.  Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.

[4]  Alok Aggarwal,et al.  Minimum area circumscribing Polygons , 2005, The Visual Computer.

[5]  Emo Welzl,et al.  Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.

[6]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[7]  Nimrod Megiddo,et al.  Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[8]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[9]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[10]  Elmar Schömer,et al.  Subquadratic algorithms for the weighted maximin facility location problem , 1995, CCCG.

[11]  Herbert Freeman,et al.  Determining the minimum-area encasing rectangle for an arbitrary closed curve , 1975, CACM.

[12]  Sivan Toledo,et al.  Extremal polygon containment problems , 1991, SCG '91.

[13]  Jean-Daniel Boissonnat,et al.  Polygon Placement Under Translation and Rotation , 1988, RAIRO Theor. Informatics Appl..

[14]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[15]  Raimund Seidel,et al.  Maximizing a Voronoi Region: the Convex Case , 2002, Int. J. Comput. Geom. Appl..

[16]  N. Megiddo Linear-time algorithms for linear programming in R3 and related problems , 1982, FOCS 1982.

[17]  Cass W. Everitt,et al.  Interactive Order-Independent Transparency , 2001 .

[18]  Steven Fortune A Fast Algorithm for Polygon Containment by Translation (Extended Abstract) , 1985, ICALP.

[19]  Jirí Matousek,et al.  The one-round Voronoi game , 2002, SCG '02.

[20]  Nimrod Megiddo,et al.  Linear-Time Algorithms for Linear Programming in R^3 and Related Problems , 1982, FOCS.

[21]  Christian Schwarz,et al.  On Nding a Minimal Enclosing Parallelogram , 1994 .

[22]  Micha Sharir,et al.  Computing the Smallest K-enclosing Circle and Related Problems , 1993, Comput. Geom..

[23]  David Eppstein Beta-skeletons have unbounded dilation , 2002, Comput. Geom..

[24]  Bernd Gärtner,et al.  Exact primitives for smallest enclosing ellipses , 1997, SCG '97.

[25]  D. T. Lee,et al.  Geometric complexity of some location problems , 1986, Algorithmica.

[26]  Markus Oswald Denny,et al.  Algorithmic geometry via graphics hardware , 2003 .

[27]  Hermann A. Maurer,et al.  New Results and New Trends in Computer Science , 1991, Lecture Notes in Computer Science.

[28]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.