Optical follow-up of gravitational wave triggers with DECam

Gravitational wave (GW) events have several possible progenitors, including black hole mergers, cosmic string cusps, supernovae, neutron star mergers, and black hole–neutron star mergers. A subset of GW events are expected to produce electromagnetic (EM) emission that, once detected, will provide complementary information about their astrophysical context. To that end, the LIGO-Virgo Collaboration has partnered with other teams to send GW candidate alerts so that searches for their EM counterparts can be pursued. One such partner is the Dark Energy Survey (DES) and Dark Energy Camera (DECam) Gravitational Waves Program (DES-GW). Situated on the 4m Blanco Telescope at the Cerro Tololo Inter-American Observatory in Chile, DECam is an ideal instrument for optical followup observations of GW triggers in the southern sky. The DES-GW program performs subtraction of new search images with respect to preexisting overlapping images to select candidate sources. Due to the short decay timescale of the expected EM counterparts and the need to quickly eliminate survey areas with no counterpart candidates, it is critical to complete the initial analysis of each night’s images within 24 hours. The computational challenges in achieving this goal include maintaining robust I/O pipelines during the processing, being able to quickly acquire template images of new sky regions outside of the typical DES observing regions, and being able to rapidly provision additional batch computing resources with little advance notice. We will discuss the search area determination, imaging pipeline, general data transfer strategy, and methods to quickly increase the available amount of batch computing. We will present results from the first season of observations from September 2015 to January 2016 and conclude by presenting improvements planned for the second observing season.

[1]  P. J. Richards,et al.  Gaia Data Release 3. Summary of the content and survey properties , 2022, Astronomy & Astrophysics.

[2]  A. Palmese,et al.  Probing gravity and growth of structure with gravitational waves and galaxies’ peculiar velocity , 2020, Physical Review D.

[3]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[4]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[5]  D. Gerdes,et al.  A DECam Search for Explosive Optical Transients Associated with IceCube Neutrino Alerts , 2019, The Astrophysical Journal.

[6]  M. Bulla,et al.  possis: predicting spectra, light curves, and polarization for multidimensional models of supernovae and kilonovae , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  F. Daigne,et al.  Radio afterglows of binary neutron star mergers: a population study for current and future gravitational wave observing runs , 2019, Astronomy & Astrophysics.

[8]  F. Daigne,et al.  Predictions for radio afterglows of binary neutron star mergers: a population study for O3 and beyond , 2019, 1905.04495.

[9]  A. Riess,et al.  Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM , 2019, The Astrophysical Journal.

[10]  B. A. Boom,et al.  Edinburgh Research Explorer First measurement of the Hubble constant from a dark standard siren using the Dark Energy Survey galaxies and the LIGO/Virgo binary-black-hole merger GW170814 , 2018 .

[11]  D. Gerdes,et al.  A Search for Optical Emission from Binary Black Hole Merger GW170814 with the Dark Energy Camera , 2018, The Astrophysical Journal.

[12]  N. E. Sommer,et al.  First cosmology results using Type Ia supernova from the Dark Energy Survey: simulations to correct supernova distance biases , 2018, Monthly Notices of the Royal Astronomical Society.

[13]  M. Ruiz,et al.  Are fast radio bursts the most likely electromagnetic counterpart of neutron star mergers resulting in prompt collapse? , 2018, Physical Review D.

[14]  R. Fern'andez,et al.  Hypermassive Neutron Star Disk Outflows and Blue Kilonovae , 2018, The Astrophysical Journal.

[15]  L. Roberts,et al.  Binary Neutron Star Mergers: Mass Ejection, Electromagnetic Counterparts, and Nucleosynthesis , 2018, The Astrophysical Journal.

[16]  S. Bose,et al.  Measuring the Hubble constant: Gravitational wave observations meet galaxy clustering , 2018, Physical Review D.

[17]  N. E. Sommer,et al.  Rapidly evolving transients in the Dark Energy Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[18]  M. Sullivan,et al.  The Dark Energy Survey: Data Release 1 , 2018, The Astrophysical Journal Supplement Series.

[19]  B. Yanny,et al.  The Dark Energy Survey Image Processing Pipeline , 2018, 1801.03177.

[20]  M. Fishbach,et al.  A two per cent Hubble constant measurement from standard sirens within five years , 2017, Nature.

[21]  K. Wiersema,et al.  The Diversity of Kilonova Emission in Short Gamma-Ray Bursts , 2017, The Astrophysical Journal.

[22]  Masaomi Tanaka,et al.  Properties of Kilonovae from Dynamical and Post-merger Ejecta of Neutron Star Mergers , 2017, 1708.09101.

[23]  Tsvi Piran,et al.  The cocoon emission - an electromagnetic counterpart to gravitational waves from neutron star mergers , 2017, 1705.10797.

[24]  J. J. González-Vidal,et al.  Gaia Data Release 2 – The astrometric solution , 2018 .

[25]  Maity Gouranga,et al.  COMPREHENSIVE STUDY OF , 2018 .

[26]  M. Fishbach,et al.  A 2 per cent Hubble constant measurement from standard sirens within 5 years , 2018 .

[27]  M. Fishbach,et al.  Precision standard siren cosmology , 2017 .

[28]  P. Cowperthwaite,et al.  The Combined Ultraviolet, Optical, and Near-infrared Light Curves of the Kilonova Associated with the Binary Neutron Star Merger GW170817: Unified Data Set, Analytic Models, and Physical Implications , 2017, 1710.11576.

[29]  E. Rykoff,et al.  Photometric Characterization of the Dark Energy Camera , 2017, 1710.10943.

[30]  D. Gerdes,et al.  Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993 , 2017, 1710.06748.

[31]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[32]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017, 1710.05833.

[33]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[34]  Armin Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera , 2017, The Astrophysical Journal.

[35]  J. Frieman,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale , 2017, 1710.05458.

[36]  Jr.,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models , 2017, 1710.05840.

[37]  R. Nichol,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Dark Energy Camera Discovery of the Optical Counterpart , 2017, 1710.05459.

[38]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[39]  David Mason,et al.  HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation , 2017, ArXiv.

[40]  R. Nichol,et al.  DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang , 2017, 1707.06649.

[41]  B. Metzger,et al.  Kilonovae , 2016, Living Reviews in Relativity.

[42]  Keivan G. Stassun,et al.  The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory , 2016, 1608.02013.

[43]  W. F. Ong,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. II. UV, Optical, and Near-IR Light Curves and Comparison to Kilonova Models , 2017 .

[44]  W. F. Ong,et al.  THE ELECTROMAGNETIC COUNTERPART OF THE BINARY NEUTRON STAR MERGER LIGO/VIRGO GW170817. I. DISCOVERY OF THE OPTICAL COUNTERPART USING THE DARK ENERGY CAMERA , 2017 .

[45]  J. Sollerman,et al.  Detectability of compact binary merger macronovae , 2016, 1611.09822.

[46]  R. Nichol,et al.  A Search for Kilonovae in the Dark Energy Survey , 2016, 1611.08052.

[47]  The Ligo Scientific Collaboration,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016, 1606.04855.

[48]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[49]  R. Nichol,et al.  A DECAM SEARCH FOR AN OPTICAL COUNTERPART TO THE LIGO GRAVITATIONAL-WAVE EVENT GW151226 , 2016, 1606.04538.

[50]  Meng-Ru Wu,et al.  RADIOACTIVITY AND THERMALIZATION IN THE EJECTA OF COMPACT OBJECT MERGERS AND THEIR IMPACT ON KILONOVA LIGHT CURVES , 2016, 1605.07218.

[51]  P. Graff,et al.  GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP , 2016, 1603.07333.

[52]  B. Kızıltan,et al.  THE INCLINATION ANGLE AND EVOLUTION OF THE BRAKING INDEX OF PULSARS WITH PLASMA-FILLED MAGNETOSPHERE: APPLICATION TO THE HIGH BRAKING INDEX OF PSR J1640–4631 , 2016, 1603.01487.

[53]  B. Yanny,et al.  A DARK ENERGY CAMERA SEARCH FOR AN OPTICAL COUNTERPART TO THE FIRST ADVANCED LIGO GRAVITATIONAL WAVE EVENT GW150914 , 2016, 1602.04198.

[54]  B. Yanny,et al.  A DARK ENERGY CAMERA SEARCH FOR MISSING SUPERGIANTS IN THE LMC AFTER THE ADVANCED LIGO GRAVITATIONAL-WAVE EVENT GW150914 , 2016, 1602.04199.

[55]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[56]  O. Gutsche,et al.  Diversity in Computing Technologies and Strategies for Dynamic Resource Allocation , 2015 .

[57]  K. Alatalo,et al.  STAR FORMATION SUPPRESSION DUE TO JET FEEDBACK IN RADIO GALAXIES WITH SHOCKED WARM MOLECULAR GAS , 2015, 1511.05968.

[58]  M. Sullivan,et al.  THE DIFFERENCE IMAGING PIPELINE FOR THE TRANSIENT SEARCH IN THE DARK ENERGY SURVEY , 2015, 1507.05137.

[59]  P. Garaud,et al.  A NEW MODEL FOR MIXING BY DOUBLE-DIFFUSIVE CONVECTION (SEMI-CONVECTION). III. THERMAL AND COMPOSITIONAL TRANSPORT THROUGH NON-LAYERED ODDC , 2015, 1506.07900.

[60]  R. C. Wolf,et al.  AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY , 2015, 1504.02936.

[61]  Andrew Becker,et al.  HOTPANTS: High Order Transform of PSF ANd Template Subtraction , 2015 .

[62]  E. Berger,et al.  A COMPREHENSIVE STUDY OF DETECTABILITY AND CONTAMINATION IN DEEP RAPID OPTICAL SEARCHES FOR GRAVITATIONAL WAVE COUNTERPARTS , 2015, 1503.07869.

[63]  Dennis Box FIFE-Jobsub: a grid submission system for intensity frontier experiments at Fermilab , 2014 .

[64]  E. Berger Short-Duration Gamma-Ray Bursts , 2013, 1311.2603.

[65]  S. Rosswog,et al.  The long-term evolution of neutron star merger remnants { II. Radioactively powered transients , 2013, 1307.2943.

[66]  Stine Bjerkestrand,et al.  Open science. , 2019, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke.

[67]  John A. Peacock,et al.  TWO MICRON ALL SKY SURVEY PHOTOMETRIC REDSHIFT CATALOG: A COMPREHENSIVE THREE-DIMENSIONAL CENSUS OF THE WHOLE SKY , 2013, 1311.5246.

[68]  Samaya Nissanke,et al.  Determining the Hubble constant from gravitational wave observations of merging compact binaries , 2013, 1307.2638.

[69]  K. Hotokezaka,et al.  RADIATIVE TRANSFER SIMULATIONS OF NEUTRON STAR MERGER EJECTA , 2013, 1306.3742.

[70]  Jennifer Barnes,et al.  EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS , 2013, 1303.5787.

[71]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[72]  J. Faber,et al.  Binary Neutron Star Mergers , 2012, Living Reviews in Relativity.

[73]  E. Berger,et al.  WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.

[74]  W. D. Pozzo Inference of cosmological parameters from gravitational waves: Applications to second generation interferometers , 2011, 1108.1317.

[75]  Predrag Buncic,et al.  Distributing LHC application software and conditions databases using the CernVM file system , 2011 .

[76]  É. Bertin Automated Morphometry with SExtractor and PSFEx , 2011 .

[77]  K. Glampedakis,et al.  f-Mode instability in relativistic neutron stars. , 2011, Physical review letters.

[78]  Peter E. Nugent,et al.  Radioactively Powered Electromagnetic Counterparts of Compact Object Mergers , 2010 .

[79]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[80]  Samaya Nissanke,et al.  EXPLORING SHORT GAMMA-RAY BURSTS AS GRAVITATIONAL-WAVE STANDARD SIRENS , 2009, 0904.1017.

[81]  Jake Vanderplas,et al.  SNANA: A Public Software Package for Supernova Analysis , 2009, 0908.4280.

[82]  Igor Sfiligoi,et al.  The Pilot Way to Grid Resources Using glideinWMS , 2009, 2009 WRI World Congress on Computer Science and Information Engineering.

[83]  Chelsea L. MacLeod,et al.  Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information , 2007, 0712.0618.

[84]  Paul Avery,et al.  The Open Science Grid , 2007 .

[85]  Patrick Fuhrmann,et al.  dCache, Storage System for the Future , 2006, Euro-Par.

[86]  Eric Bertin,et al.  Automatic Astrometric and Photometric Calibration with SCAMP , 2006 .

[87]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[88]  Daniel E. Holz,et al.  Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.

[89]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[90]  Norbert Zacharias,et al.  The Naval Observatory Merged Astrometric Dataset (NOMAD) , 2004 .

[91]  Mark R. Calabretta,et al.  Representations of world coordinates in FITS , 2002, astro-ph/0207407.

[92]  A. T. Young Air mass and refraction. , 1994, Applied optics.

[93]  Kevin Krisciunas,et al.  A MODEL OF THE BRIGHTNESS OF MOONLIGHT , 1991 .

[94]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.