A System for the Determination of Planar Lipid Bilayer Breakdown Voltage and Its Applications

In this paper, we focus on measurement principles used in electroporation studies on planar lipid bilayers. In particular, we point out the voltage-clamp measurement principle that has great importance when the breakdown voltage of a planar lipid bilayer is under consideration; however, it is also appropriate for the determination of other planar lipid bilayer electrical properties such as resistance and capacitance. A new experimental system that is based on the voltage-clamp measurement principle is described. With the use of a generator that can generate arbitrary-type signals, many specific shapes of a voltage signal could be generated, and therefore, the experimental system is appropriate for a broad spectrum of measurements.

[1]  V. Picciarelli,et al.  Studies of mitochondrial porin incorporation parameters and voltage-gated mechanism with different black lipid membranes. , 2000, Bioelectrochemistry.

[2]  M. Winterhalter,et al.  INFLUENCE OF SURFACE CHARGES ON THE RUPTURE OF BLACK LIPID MEMBRANES , 1998 .

[3]  E Neumann,et al.  Fundamentals of electroporative delivery of drugs and genes. , 1999, Bioelectrochemistry and bioenergetics.

[4]  L Tung,et al.  Poloxamer 188 decreases susceptibility of artificial lipid membranes to electroporation. , 1996, Biophysical journal.

[5]  H. Nakanishi,et al.  Characterization of the preparation process and the photochemical control of electrical properties of bilayer lipid membranes containing azobenzene chromophores. , 1993, Biochimica et biophysica acta.

[6]  D. Miklavčič,et al.  Determination of the lipid bilayer breakdown voltage by means of linear rising signal. , 2007, Bioelectrochemistry.

[7]  S. Kalinowski,et al.  A new system for bilayer lipid membrane capacitance measurements: method, apparatus and applications. , 1992, Biochimica et biophysica acta.

[8]  D. Miklavčič,et al.  Electroporation of Planar Lipid Bilayers and Membranes , 2007 .

[9]  D. Ferber Gene therapy. Safer and virus-free? , 2001, Science.

[10]  R. Benz,et al.  Voltage-induce capacitance relaxation of lipid bilayer membranes. Effects of membrane composition. , 1976, Biochimica et biophysica acta.

[11]  A. Gliozzi,et al.  A picoampere current generator for membrane electroporation , 2000 .

[12]  T. Eibert,et al.  Electromagnetic and thermal analysis for lipid bilayer membranes exposed to RF fields , 1999, IEEE Transactions on Biomedical Engineering.

[13]  Programmable chronopotentiometry as a tool for the study of electroporation and resealing of pores in bilayer lipid membranes. , 2002, Biochimica et biophysica acta.

[14]  S. Kalinowski,et al.  A four-electrode system for measurement of bilayer lipid membrane capacitance , 1995 .

[15]  N. M. Correa,et al.  Electroporation of unilamellar vesicles studied by using a pore-mediated electron-transfer reaction , 1998 .

[16]  D. Miklavčič,et al.  Chapter Seven Electroporation of Planar Lipid Bilayers and Membranes , 2008 .

[17]  A. Gliozzi,et al.  Linear response of a fluctuating lipid bilayer , 1998 .

[18]  P. Moreau Lipids , 2007 .

[19]  A. Chanturiya Detection of transient capacitance increase associated with channel formation in lipid bilayers. , 1990, Biochimica et biophysica acta.

[20]  Dan Ferber,et al.  Safer and Virus-Free? , 2001, Science.

[21]  S. Kalinowski,et al.  Chronopotentiometric studies of electroporation of bilayer lipid membranes. , 1998, Biochimica et biophysica acta.

[22]  J Teissié,et al.  Elimination of free-living amoebae in fresh water with pulsed electric fields. , 2002, Water research.

[23]  S. Micelli,et al.  Pore formation in lipid bilayer membranes made of phosphatidylinositol and oxidized cholesterol followed by means of alternating current. , 1996, Biophysical journal.

[24]  R. Benz,et al.  Kinetics of pore size during irreversible electrical breakdown of lipid bilayer membranes. , 1993, Biophysical journal.

[25]  B. Rubinsky,et al.  Tissue Ablation with Irreversible Electroporation , 2005, Annals of Biomedical Engineering.

[26]  Damijan Miklavcic,et al.  Inter-pulse interval between rectangular voltage pulses affects electroporation threshold of artificial lipid bilayers. , 2002, IEEE transactions on nanobioscience.

[27]  L. Chernomordik,et al.  Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. , 2001, Biophysical journal.

[28]  L. Maga,et al.  Permeation of divalent cations through α-latrotoxin channels in lipid bilayers: steady-state current-voltage relationships , 2005, The Journal of Membrane Biology.

[29]  A. Gliozzi,et al.  Conductance transition induced by an electric field in lipid bilayers. , 1989, Biochimica et biophysica acta.

[30]  E. Rojas,et al.  Displacement currents associated with the insertion of Alzheimer disease amyloid beta-peptide into planar bilayer membranes. , 2000, Biophysical journal.

[31]  A. Gliozzi,et al.  Flicker noise in bilayer lipid membranes , 1998 .

[32]  R. Benz,et al.  Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study , 1979, The Journal of Membrane Biology.

[33]  Simultaneous measurement of spectroscopic and physiological signals from a planar bilayer system: detecting voltage-dependent movement of a membrane-incorporated peptide. , 1998, Biochemistry.

[34]  L. Chernomordik,et al.  Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. , 1988, Biochimica et biophysica acta.

[35]  M. Kandušer,et al.  Shape transformation and burst of giant POPC unilamellar liposomes modulated by non-ionic detergent C12E8. , 2003, Chemistry and physics of lipids.

[36]  Veronika Kralj-Iglič,et al.  Stabilization of Pores in Lipid Bilayers by Anisotropic Inclusions , 2003 .

[37]  V. Sharma,et al.  The reduction in electroporation voltages by the addition of a surfactant to planar lipid bilayers. , 1998, Biophysical journal.

[38]  L. Mir,et al.  Electrochemotherapy of tumours resistant to cisplatin: a study in a murine tumour model. , 2001, European journal of cancer.

[39]  S. Kalinowski,et al.  A four-electrode potentiostat-galvanostat for studies of bilayer lipid membranes , 1995 .

[40]  H. Ti Tien,et al.  The lipid bilayer concept and its experimental realization: from soap bubbles, kitchen sink, to bilayer lipid membranes , 2001 .

[41]  M. Kandušer,et al.  Shape transformation of giant phospholipid vesicles at high concentrations of C12E8. , 2004, Bioelectrochemistry.

[42]  G. Gould Biodeterioration of foods and an overview of preservation in the food and dairy industries , 1995 .

[43]  Z. A. Schelly,et al.  Electric field-induced transient birefringence and light scattering of synthetic liposomes. , 1999, Biochimica et biophysica acta.

[44]  M Montal,et al.  Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M. R. Tarasevich,et al.  246 - Electric breakdown of bilayer lipid membranes I. The main experimental facts and their qualitative discussion , 1979 .

[46]  A. Gliozzi,et al.  Electroporation in symmetric and asymmetric membranes. , 1993, Biochimica et biophysica acta.

[47]  Boris Rubinsky,et al.  Irreversible Electroporation: A New Ablation Modality — Clinical Implications , 2007, Technology in cancer research & treatment.

[48]  S. Orlowski,et al.  Mechanisms of electrochemotherapy. , 1999, Advanced drug delivery reviews.

[49]  Véronique Préat,et al.  Transdermal delivery of timolol by electroporation through human skin. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[50]  A. Gliozzi,et al.  Noise measurements in bilayer lipid membranes during electroporation , 2000 .

[51]  Mathias Winterhalter,et al.  Stabilization of planar lipid membranes: A stratified layer approach , 2000 .