Sensor Technologies Empowered by Materials and Molecular Innovations.

Functional synthetic designer materials can impact many advanced technologies, and the chemical sensor area is intimately reliant on these new chemical innovations. The transduction of chemical and biological signals is necessary for low cost omnipresent chemical sensing and will be realized by chemical designs of new transduction materials. We are poised for many new innovations to empower new generations of sensor technologies. Materials innovations promise to expand the capabilities of present hardware, drive down the cost, and ensure broad implementation of these methods.

[1]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[2]  T. Swager,et al.  Simultaneous Identification of Neutral and Anionic Species in Complex Mixtures without Separation. , 2016, Angewandte Chemie.

[3]  T. Swager,et al.  Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness. , 2012, Angewandte Chemie.

[4]  Timothy M. Swager,et al.  Nanodrähte in Chemo‐ und Biosensoren: aktueller Stand und Fahrplan für die Zukunft , 2016 .

[5]  Shannon E. Stitzel,et al.  Cross-reactive chemical sensor arrays. , 2000, Chemical reviews.

[6]  Peter H. Seeberger,et al.  Janus Emulsions for the Detection of Bacteria , 2017, ACS central science.

[7]  Maria K. LaGasse,et al.  An optoelectronic nose for identification of explosives† †Electronic supplementary information (ESI) available: Sampling details, handheld reader details, additional array response data, PCA component score plots, 1H-NMR of DMDNB and PETN. See DOI: 10.1039/c5sc02632f , 2015, Chemical science.

[8]  E. Danieli,et al.  Small magnets for portable NMR spectrometers. , 2010, Angewandte Chemie.

[9]  Alexander Baev,et al.  Manipulating Magneto-Optic Properties of a Chiral Polymer by Doping with Stable Organic Biradicals. , 2016, Nano letters.

[10]  T. Swager,et al.  Single-walled carbon nanotube/metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage. , 2015, Angewandte Chemie.

[11]  Beate Paulus,et al.  Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications , 2017, Nature Communications.

[12]  Boris Murmann,et al.  Matrix-insensitive protein assays push the limits of biosensors in medicine , 2009, Nature Medicine.

[13]  D. Rugar,et al.  Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor , 2013, Science.

[14]  Masahiro Abe,et al.  Large Faraday Rotation in a π-Conjugated Poly(arylene ethynylene) Thin Film , 2009 .

[15]  T. Swager,et al.  Conjugated polymer-based chemical sensors. , 2000, Chemical reviews.

[16]  Ernesto Danieli,et al.  Kleine Magnete für NMR‐Spektroskopie vor Ort , 2010 .

[17]  Timothy M. Swager,et al.  Wireless Hazard Badges to Detect Nerve-Agent Simulants. , 2016, Angewandte Chemie.

[18]  Joseph M Azzarelli,et al.  Nanowire Chemical/Biological Sensors: Status and a Roadmap for the Future. , 2015, Angewandte Chemie.

[19]  T. Swager,et al.  Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. , 2008, Journal of the American Chemical Society.

[20]  Y. Weizmann,et al.  Sensory Arrays of Covalently Functionalized Single‐Walled Carbon Nanotubes for Explosive Detection , 2013 .

[21]  Bora Yoon,et al.  Wireless Oxygen Sensors Enabled by Fe(II)-Polymer Wrapped Carbon Nanotubes. , 2017, ACS sensors.

[22]  Fei Wang,et al.  Diverse chemiresistors based upon covalently modified multiwalled carbon nanotubes. , 2011, Journal of the American Chemical Society.

[23]  Bing Yan,et al.  SERS tags: novel optical nanoprobes for bioanalysis. , 2013, Chemical reviews.

[24]  Georgios Markopoulos,et al.  19F NMR Fingerprints: Identification of Neutral Organic Compounds in a Molecular Container , 2014, Journal of the American Chemical Society.

[25]  Michael S Strano,et al.  A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring. , 2015, Small.

[26]  Morteza Mahmoudi,et al.  Themed Issue: Chemical and Biological Detection Chemical Society Reviews Optical Sensor Arrays for Chemical Sensing: the Optoelectronic Nose , 2022 .

[27]  Gungun Lin,et al.  Magnetic sensing platform technologies for biomedical applications. , 2017, Lab on a chip.

[28]  Richard W. Taylor,et al.  Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "glue". , 2011, ACS nano.

[29]  Vishnu Sresht,et al.  Dynamically reconfigurable complex emulsions via tunable interfacial tensions , 2015, Nature.

[30]  Palash Gangopadhyay,et al.  Magneto-optic Properties of Regioregular Polyalkylthiophenes† , 2011 .

[31]  T. Swager,et al.  Covalent Functionalization of Carbon Nanomaterials with Iodonium Salts , 2016 .

[32]  Timothy M. Swager,et al.  Selektiver Nachweis von Ethylengas mit Kohlenstoffnanoröhren als Hilfsmittel in der Fruchtreifebestimmung , 2012 .

[33]  Lauren D. Zarzar,et al.  Reconfigurable and responsive droplet-based compound micro-lenses , 2017, Nature Communications.

[34]  Gunther Hennrich,et al.  Giant Faraday Rotation in Mesogenic Organic Molecules , 2013 .

[35]  T. Swager,et al.  Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects , 1998 .

[36]  Colin J. Cumming,et al.  Using novel fluorescent polymers as sensory materials for above-ground sensing of chemical signature compounds emanating from buried landmines , 2001, IEEE Trans. Geosci. Remote. Sens..

[37]  Qin Zhou,et al.  Method for enhancing the sensitivity of fluorescent chemosensors: energy migration in conjugated polymers , 1995 .

[38]  Takeshi Tanaka,et al.  Metallic versus Semiconducting SWCNT Chemiresistors: A Case for Separated SWCNTs Wrapped by a Metallosupramolecular Polymer. , 2017, ACS applied materials & interfaces.

[39]  Lauren D. Zarzar,et al.  Optical visualization and quantification of enzyme activity using dynamic droplet lenses , 2017, Proceedings of the National Academy of Sciences.