MRD-codes arising from the trinomial $x^q+x^{q^3}+cx^{q^5}\in\mathbb{F}_{q^6}[x]$

In [10], the existence of $\mathbb{F}_q$-linear MRD-codes of $\mathbb{F}_q^{6\times 6}$, with dimension $12$, minimum distance $5$ and left idealiser isomorphic to $\mathbb{F}_{q^6}$, defined by a trinomial of $\mathbb{F}_{q^6}[x]$, when $q$ is odd and $q\equiv 0,\pm 1\pmod 5$, has been proved. In this paper we show that this family produces $\mathbb{F}_q$-linear MRD-codes of $\mathbb{F}_q^{6\times 6}$, with the same properties, also in the remaining $q$ odd cases, but not in the $q$ even case. These MRD-codes are not equivalent to the previously known MRD-codes. We also prove that the corresponding maximum scattered $\mathbb{F}_q$-linear sets of $\mathrm{PG}(1,q^6)$ are not $\mathrm{P}\Gamma\mathrm{L}(2,q^6)$-equivalent to any previously known scattered linear set.

[1]  Ernst M. Gabidulin,et al.  The new construction of rank codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[2]  Guglielmo Lunardon,et al.  Blocking Sets and Derivable Partial Spreads , 2001 .

[3]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[4]  Bence Csajbók,et al.  On the equivalence of linear sets , 2015, Des. Codes Cryptogr..

[5]  Bence Csajbók,et al.  On scattered linear sets of pseudoregulus type in PG(1, qt) , 2016, Finite Fields Their Appl..

[6]  John Sheekey,et al.  New semifields and new MRD codes from skew polynomial rings , 2018, Journal of the London Mathematical Society.

[7]  Nicola Durante,et al.  Non-Linear Maximum Rank Distance Codes in the Cyclic Model for the Field Reduction of Finite Geometries , 2017, Electron. J. Comb..

[8]  Olga Polverino,et al.  Linear sets in finite projective spaces , 2010, Discret. Math..

[9]  Ferruh Özbudak,et al.  Some new non-additive maximum rank distance codes , 2018, Finite Fields Their Appl..

[10]  Giuseppe Marino,et al.  A new family of MRD-codes , 2017, Linear Algebra and its Applications.

[11]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[12]  Ferruh Özbudak,et al.  Additive Rank Metric Codes , 2017, IEEE Transactions on Information Theory.

[13]  Michel Lavrauw,et al.  Scattered Spaces in Galois Geometry , 2015, 1512.05251.

[14]  M. Lavrauw,et al.  Finite Semifields and Galois Geometry ∗ , 2011 .

[15]  Rocco Trombetti,et al.  Generalized Twisted Gabidulin Codes , 2015, J. Comb. Theory A.

[16]  Michel Lavrauw,et al.  Scattered Spaces with Respect to a Spread in PG(n,q) , 2000 .

[17]  John Sheekey,et al.  A new family of linear maximum rank distance codes , 2015, Adv. Math. Commun..

[18]  John Sheekey,et al.  A characterization of the number of roots of linearized and projective polynomials in the field of coefficients , 2018, Finite Fields Their Appl..

[19]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[20]  Rocco Trombetti,et al.  On kernels and nuclei of rank metric codes , 2016, ArXiv.

[21]  Giuseppe Marino,et al.  A Carlitz type result for linearized polynomials , 2018, Ars Math. Contemp..

[22]  Guglielmo Lunardon,et al.  MRD-codes and linear sets , 2017, J. Comb. Theory, Ser. A.

[23]  Ferdinando Zullo,et al.  Identifiers for MRD-codes , 2018, Linear Algebra and its Applications.

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Gabriele Nebe,et al.  Automorphism groups of Gabidulin-like codes , 2016, ArXiv.

[26]  Giuseppe Marino,et al.  Classes and equivalence of linear sets in PG(1, qn) , 2016, J. Comb. Theory, Ser. A.