On the driving force for fatigue crack formation from inclusions and voids in a cast A356 aluminum alloy

[1]  Fan,et al.  The influence of modified intermetallics and Si particles on fatigue crack paths in a cast A356 Al alloy , 2000 .

[2]  D. McDowell,et al.  The debonding and fracture of Si particles during the fatigue of a cast Al-Si alloy , 1999 .

[3]  Peter J. Laz,et al.  Fatigue life prediction from inclusion initiated cracks , 1998 .

[4]  A. Gokhale,et al.  Relationship between microstructural extremum and fracture path in a cast Al-Si-Mg alloy , 1997 .

[5]  Kazuaki Shiozawa,et al.  CRACK INITIATION AND SMALL FATIGUE CRACK GROWTH BEHAVIOUR OF SQUEEZE‐CAST Al‐Si ALUMINIUM ALLOYS , 1997 .

[6]  David L. McDowell,et al.  Basic issues in the mechanics of high cycle metal fatigue , 1996 .

[7]  W. Gerberich,et al.  Atomic force microscopy and modeling of fatigue crack initiation in metals , 1994 .

[8]  Y. Murakami,et al.  Effects of defects, inclusions and inhomogeneities on fatigue strength , 1994 .

[9]  Lyndon Edwards,et al.  Effect of surface texture on fatigue life in a squeeze-cast 6082 aluminium alloy , 1993 .

[10]  Yip-Wah Chung,et al.  Application of minimum energy formalism in a multiple slip band model for fatigue — I. Calculation of slip band spacings , 1991 .

[11]  Yip-Wah Chung,et al.  Application of minimum energy formalism in a multiple slip band model for fatigue—II. Crack nucleation and derivation of a generalised Coffin-Manson law , 1991 .

[12]  Ali Fatemi,et al.  Multiaxial Fatigue Life Predictions Under the Influence of Mean-Stresses , 1988 .

[13]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[14]  Morris E. Fine,et al.  Fatigue Crack initiation and microcrack growth in 2024-T4 and 2124-T4 aluminum alloys , 1979 .

[15]  W. Morris The effect of intermetallics composition and microstructure on fatigue crack initiation in AI 2219-T851 , 1978 .

[16]  Campbell Laird,et al.  Crack nucleation and stage I propagation in high strain fatigue—II. mechanism , 1978 .

[17]  K. Koyanagi,et al.  Early stage crack tip dislocation morphology in fatigued copper , 1977 .

[18]  Otto Buck,et al.  Fatigue crack initiation and early propagation in Al 2219-T851 , 1976 .

[19]  B. Sundström An energy condition for initiation of interfacial microcracks at inclusions , 1974 .

[20]  G. Härkegård A finite element analysis of elastic-plastic plates containing cavities and inclusions with reference to fatigue crack initiation , 1973, International Journal of Fracture.

[21]  J. Schijve,et al.  The role of inclusions in fatigue crack initiation in an aluminum alloy , 1973 .

[22]  J. Lankford,et al.  Initiation of fatigue cracks in 4340 steel , 1973 .

[23]  P. Forsyth,et al.  Exudation of Material from Slip Bands at the Surface of Fatigued Crystals of an Aluminium–Copper Alloy , 1953, Nature.

[24]  C Bathias,et al.  Relation Between Endurance Limits and Thresholds in the Field of Gigacycle Fatigue , 2000 .

[25]  David L. McDowell,et al.  Stress state dependence of cyclic ratchetting behavior of two rail steels , 1995 .

[26]  S. Suresh Fatigue of materials , 1991 .

[27]  T. Mura,et al.  Free energy formulation of fatigue crack initiation along persistent slip bands: calculation of SN curves and crack depths , 1990 .

[28]  N. Fleck,et al.  Softening by void nucleation and growth in tension and shear , 1989 .

[29]  K. Tanaka,et al.  A theory of fatigue crack initiation at inclusions , 1982 .

[30]  I. Bernstein,et al.  The effect of defects on the fatigue crack initiation process in two p/m superalloys: part i. fatigue origins , 1982 .