Atomic force microscopy dynamic modes: modeling and applications

This paper contains a review of the development in modeling and applications of atomic force microscopy (AFM) modes. AFM is commonly used for atomic and nano-scale surface measurement. Two operational modes of AFM exist: static mode and dynamic mode. In dynamic AFM mode, a cantilever is driven to vibrate by its holder or the sample. The changes of cantilever vibration parameters due to tip–sample interaction are used to reveal surface properties of samples. Analytical and numerical models that can accurately simulate surface-coupled cantilever dynamics are essential for explaining AFM scanning images and evaluating a sample's material properties. The objective of this paper is to categorize the existing AFM dynamic modes and measurement techniques in terms of cantilever deflection and excitation mechanism, summarize AFM cantilever models presented in the literature, and demonstrate the applications of these models in AFM mode simulations. Based on the relations between cantilever responses and tip–sample interaction, methods for quantitative evaluation of a sample's mechanical parameters are described.

[1]  N. Amer,et al.  Simultaneous measurement of lateral and normal forces with an optical‐beam‐deflection atomic force microscope , 1990 .

[2]  B. Bhushan,et al.  Simulation of dynamic modes of atomic force microscopy using a 3D finite element model , 2006 .

[3]  Amelio,et al.  Quantitative determination of contact stiffness using atomic force acoustic microscopy , 2000, Ultrasonics.

[4]  Bharat Bhushan,et al.  Lateral force microscopy using acoustic friction force microscopy , 1999 .

[5]  Bharat Bhushan,et al.  Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly thick lubricant films. , 2003, Ultramicroscopy.

[6]  F. Giessibl,et al.  Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy , 1995, Science.

[7]  B. Bhushan,et al.  Dynamic analysis of torsional resonance mode of atomic force microscopy and its application to in-plane surface property extraction , 2006 .

[8]  Bharat Bhushan,et al.  Finite-element vibration analysis of tapping-mode atomic force microscopy in liquid. , 2007, Ultramicroscopy.

[9]  Bharat Bhushan,et al.  Atomic‐scale and microscale friction studies of graphite and diamond using friction force microscopy , 1994 .

[10]  H. Hosaka,et al.  DAMPING CHARACTERISTICS OF BEAM-SHAPED MICRO-OSCILLATORS , 1995 .

[11]  D. Tabor Surface Forces and Surface Interactions , 1977 .

[12]  Kazushi Yamanaka,et al.  Quantitative elasticity evaluation by contact resonance in an atomic force microscope , 1998 .

[13]  K. Yamanaka,et al.  Lateral Force Modulation Atomic Force Microscope for Selective Imaging of Friction Forces , 1995 .

[14]  Joseph A. Turner,et al.  Atomic force acoustic microscopy methods to determine thin-film elastic properties , 2003 .

[15]  B. Bhushan,et al.  Atomic-scale topographic and friction force imaging and cantilever dynamics in friction force microscopy , 2006 .

[16]  P. Hansma,et al.  Using force modulation to image surface elasticities with the atomic force microscope , 1991 .

[17]  E. Dupas,et al.  High-frequency mechanical spectroscopy with an atomic force microscope , 2001 .

[18]  M. Ahlskog,et al.  Lateral force microscopy of multiwalled carbon nanotubes. , 2009, Ultramicroscopy.

[19]  Charles M. Lieber,et al.  Nanotribology and Nanofabrication of MoO3 Structures by Atomic Force Microscopy , 1996, Science.

[20]  W. Arnold,et al.  High-frequency response of atomic-force microscope cantilevers , 1997 .

[21]  Dror Sarid,et al.  Numerical simulations of a scanning force microscope with a large-amplitude vibrating cantilever , 1994 .

[22]  F. Kienberger,et al.  Hydrodynamic damping of a magnetically oscillated cantilever close to a surface. , 2004, Ultramicroscopy.

[23]  O. L. Blakslee,et al.  Elastic Constants of Compression-Annealed Pyrolytic Graphite , 1970 .

[24]  Ute Rabe,et al.  Vibrations of free and surface‐coupled atomic force microscope cantilevers: Theory and experiment , 1996 .

[25]  Hendrik Hölscher,et al.  Simulation of a scanned tip on a NaF(001) surface in friction force microscopy , 1996 .

[26]  Y. Sugawara,et al.  ANALYSIS OF EXPERIMENTAL LOAD DEPENDENCE OF TWO-DIMENSIONAL ATOMIC-SCALE FRICTION , 1998 .

[27]  Inspec Properties of silicon , 1988 .

[28]  Harald Fuchs,et al.  Interfacial friction obtained by lateral manipulation of nanoparticles using atomic force microscopy techniques , 2007 .

[29]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[30]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[31]  John Abrahamson,et al.  The surface energies of graphite , 1973 .

[32]  J. Sader,et al.  Susceptibility of atomic force microscope cantilevers to lateral forces: Experimental verification , 2003 .

[33]  L. Samuelson,et al.  Controlled manipulation of nanoparticles with an atomic force microscope , 1995 .

[34]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[35]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[36]  Georg Schitter,et al.  State-space model of freely vibrating and surface-coupled cantilever dynamics in atomic force microscopy , 2004 .

[37]  C. Siegerist,et al.  Reproducible Imaging and Dissection of Plasmid DNA Under Liquid with the Atomic Force Microscope , 1992, Science.

[38]  Park,et al.  Multiple-tip interpretation of anomalous scanning-tunneling-microscopy images of layered materials. , 1987, Physical review. B, Condensed matter.

[39]  L. Wang,et al.  Analytical descriptions of the tapping-mode atomic force microscopy response , 1998 .

[40]  C. Quate,et al.  Atomic resolution imaging of a nonconductor by atomic force microscopy , 1987 .

[41]  B. Bhushan,et al.  Phase contrast imaging of nanocomposites and molecularly thick lubricant films in magnetic media , 2003 .

[42]  Jan Greve,et al.  Tapping mode atomic force microscopy in liquid , 1994 .

[43]  Klaus Rademann,et al.  Contact area dependence of frictional forces: Moving adsorbed antimony nanoparticles , 2005 .

[44]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[45]  Kobayashi,et al.  Atomic-scale friction image of graphite in atomic-force microscopy. , 1996, Physical review. B, Condensed matter.

[46]  Othmar Marti,et al.  Combined scanning force and friction microscopy of mica , 1990 .

[47]  J. Sader Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope , 1998 .

[48]  S. Kitamura,et al.  Observation of Silicon Surfaces Using Ultrahigh Vacuum Noncontact Atomic Force Microscope , 1996 .

[49]  Goodman,et al.  Roles of the attractive and repulsive forces in atomic-force microscopy. , 1991, Physical review. B, Condensed matter.

[50]  Jason Cleveland,et al.  Energy dissipation in tapping-mode atomic force microscopy , 1998 .

[51]  G. McClelland,et al.  Atomic-scale friction of a tungsten tip on a graphite surface. , 1987, Physical review letters.

[52]  Paul K. Hansma,et al.  Tapping mode atomic force microscopy in liquids , 1994 .

[53]  S. Tolbert,et al.  The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure , 1995 .

[54]  W. G. Matthews,et al.  Controlled manipulation of molecular samples with the nanoManipulator , 2000 .

[55]  J. Kysar,et al.  Viscoplastic and granular behavior in films of colloidal nanocrystals. , 2007, Physical review letters.

[56]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[57]  Franz J. Giessibl,et al.  Forces and frequency shifts in atomic-resolution dynamic-force microscopy , 1997 .

[58]  Paul K. Hansma,et al.  Atomic force microscopy of liquid‐covered surfaces: Atomic resolution images , 1987 .

[59]  Hans-Jürgen Butt,et al.  Calculation of thermal noise in atomic force microscopy , 1995 .

[60]  Oleg Kolosov,et al.  Ultrasonic force microscopy for nanometer resolution subsurface imaging , 1994 .

[61]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[62]  B. Bhushan,et al.  Investigating ultra-thin lubricant layers using resonant friction force microscopy , 2005 .

[63]  Hendrik Hölscher,et al.  CONSEQUENCES OF THE STICK-SLIP MOVEMENT FOR THE SCANNING FORCE MICROSCOPY IMAGING OF GRAPHITE , 1998 .

[64]  Joseph A. Turner,et al.  Sensitivity of flexural and torsional vibration modes of atomic force microscope cantilevers to surface stiffness variations , 2001 .

[65]  Isaac M Daniel,et al.  Mechanical characterization of graphite/epoxy nanocomposites by multi-scale analysis , 2007 .

[66]  Joseph A. Turner,et al.  Analysis of the high-frequency response of atomic force microscope cantilevers , 1997 .

[67]  Pascal Gallo,et al.  How does a tip tap? , 1997 .

[68]  A. P. Alivisatos,et al.  First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: a model system for studying the anisotropic growth of CdSe nanocrystals. , 2005, Journal of Physical Chemistry B.

[69]  H. C. Hamaker The London—van der Waals attraction between spherical particles , 1937 .

[70]  Oliver B. Wright,et al.  Vibrational dynamics of force microscopy: Effect of tip dimensions , 1997 .

[71]  Jim Woodhouse,et al.  Stick–slip motion in the atomic force microscope , 1998 .

[72]  Bharat Bhushan,et al.  On the nanoscale measurement of friction using atomic-force microscope cantilever torsional resonances , 2003 .

[73]  Gerd Binnig,et al.  Atomic Resolution with Atomic Force Microscope , 1987 .

[74]  Javier Tamayo,et al.  Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy , 1998 .

[75]  Thomas Thundat,et al.  Harmonic response of near‐contact scanning force microscopy , 1995 .

[76]  Bharat Bhushan,et al.  Measurements of elastic properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy , 2001 .

[77]  John E. Sader,et al.  Susceptibility of atomic force microscope cantilevers to lateral forces , 2003 .

[78]  D. J. Gorman Free vibration analysis of beams and shafts , 1975 .

[79]  B. Bhushan,et al.  Morphological, nanomechanical and cellular structural characterization of human hair and conditioner distribution using torsional resonance mode with an atomic force microscope , 2005, Journal of microscopy.

[80]  G. Lévêque,et al.  Vibration of the cantilever in Force Modulation Microscopy analysis by a finite element model , 2003 .

[81]  H. Hölscher,et al.  Modelling of the scan process in lateral force microscopy , 1997 .

[82]  B. Bhushan,et al.  Topography and phase imaging using the torsional resonance mode , 2004 .

[83]  Joseph A. Turner,et al.  Imaging using lateral bending modes of atomic force microscope cantilevers , 2004 .

[84]  B. Bhushan,et al.  Coupling of cantilever lateral bending and torsion in torsional resonance and lateral excitation modes of atomic force microscopy , 2006 .

[85]  Bharat Bhushan,et al.  Imaging and measurement of elasticity and friction using the TRmode , 2005 .

[86]  Ute Rabe,et al.  Acoustic microscopy by atomic force microscopy , 1994 .

[87]  Kazushi Yamanaka,et al.  Ultrasonic Atomic Force Microscope with Overtone Excitation of Cantilever , 1996 .

[88]  Stephen W. Howell,et al.  Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment , 2002 .

[89]  Bharat Bhushan,et al.  Quantitative extraction of in-plane surface properties using torsional resonance mode of atomic force microscopy , 2005 .

[90]  Thomas Thundat,et al.  Transient response of tapping scanning force microscopy in liquids , 1996 .

[91]  Ricardo Garcia,et al.  Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy , 2001 .

[92]  C F Quate,et al.  Imaging crystals, polymers, and processes in water with the atomic force microscope. , 1989, Science.

[93]  Mathias Göken,et al.  Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy , 2002 .

[94]  C. H. Devillers,et al.  Manipulation of cadmium selenide nanorods with an atomic force microscope , 2009, Nanotechnology.

[95]  L. Wang The role of damping in phase imaging in tapping mode atomic force microscopy , 1999 .

[96]  Bharat Bhushan,et al.  A surface topography-independent friction measurement technique using torsional resonance mode in an AFM , 2004 .

[97]  C. Su,et al.  A torsional resonance mode AFM for in-plane tip surface interactions. , 2004, Ultramicroscopy.

[98]  D. Maugis Adhesion of spheres : the JKR-DMT transition using a dugdale model , 1992 .

[99]  J. Turner Non-linear vibrations of a beam with cantilever-Hertzian contact boundary conditions , 2004 .