Eigenvalue approximation by mixed and hybrid methods

Note: Univ maryland,dept math,college pk,md 20742. ecole polytech,ctr math appl,f-91128 palaiseau,france. univ paris 6,f-75230 paris 05,france. Mercier, b, cea limeil,f-94190 villeneuve,france.ISI Document Delivery No.: LQ584Times Cited: 29Cited Reference Count: 44 Reference ASN-ARTICLE-1981-005doi:10.2307/2007651 Record created on 2006-08-24, modified on 2017-05-12

[1]  I. Babuska,et al.  Analysis of mixed methods using mesh dependent norms , 1980 .

[2]  R. S. Falk,et al.  Error estimates for mixed methods , 1980 .

[3]  Vivette Girault,et al.  An analysis of a mixed finite element method for the Navier-Stokes equations , 1979 .

[4]  Rolf Rannacher,et al.  On nonconforming an mixed finite element methods for plate bending problems. The linear case , 1979 .

[5]  Kazuo Ishihara,et al.  A Mixed Finite Element Method for the Biharmonic Eigenvalue Problems of Plate Bending , 1978 .

[6]  Richard S. Falk Approximation of the Biharmonic Equation by a Mixed Finite Element Method , 1978 .

[7]  William G. Kolata,et al.  Approximation in variationally posed eigenvalue problems , 1978 .

[8]  Reinhard Scholz A mixed method for 4th order problems using linear finite elements , 1978 .

[9]  J. Rappaz,et al.  Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods , 1978 .

[10]  JEAN DESCLOUX,et al.  On spectral approximation. Part 2. Error estimates for the Galerkin method , 1978 .

[11]  J. Rappaz,et al.  On spectral approximation. Part 1. The problem of convergence , 1978 .

[12]  C. Canuto,et al.  Eigenvalue approximations by mixed methods , 1978 .

[13]  P. Raviart,et al.  Primal hybrid finite element methods for 2nd order elliptic equations , 1977 .

[14]  K. Ishihara Convergence of the Finite Element Method Applied to the Eigenvalue Problem Δu + λu = 0 , 1977 .

[15]  I. Babuska,et al.  Numerical treatment of eigenvalue problems for differential equations with discontinuous coefficients. [''Factoring'' procedure] , 1977 .

[16]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[17]  Michel Fortin,et al.  An analysis of the convergence of mixed finite element methods , 1977 .

[18]  J. Osborn Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier–Stokes Equations , 1976 .

[19]  J. Oden,et al.  On Mixed Finite Element Approximations , 1976 .

[20]  J. Osborn Spectral approximation for compact operators , 1975 .

[21]  Franco Brezzi,et al.  Sur la methode des elements finis hybrides pour le probleme biharmonique , 1975 .

[22]  S. Nemat-Nasser V – General Variational Principles in Nonlinear and Linear Elasticity with Applications , 1974 .

[23]  Philippe G. Ciarlet,et al.  A Mixed Finite Element Method for the Biharmonic Equation , 1974 .

[24]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[25]  J. Bramble,et al.  Rate of convergence estimates for nonselfadjoint eigenvalue approximations , 1973 .

[26]  George J. Fix,et al.  Eigenvalue approximation by the finite element method , 1973 .

[27]  Claes Johnson,et al.  On the convergence of a mixed finite-element method for plate bending problems , 1973 .

[28]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[29]  Sia Nemat-Nasser,et al.  On Harmonic Waves in Layered Composites , 1972 .

[30]  Received December,et al.  Error-Bounds for Finite Element M ethod* , 1971 .

[31]  I. Babuska Error-bounds for finite element method , 1971 .

[32]  Leonard R. Herrmann,et al.  Finite-Element Bending Analysis for Plates , 1967 .

[33]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .